A300713 Decimal expansion of sqrt(Pi^2/6 - 1) = sqrt(zeta(2) - 1).
8, 0, 3, 0, 7, 7, 8, 7, 0, 9, 7, 4, 0, 5, 8, 4, 2, 8, 1, 8, 4, 3, 2, 1, 2, 4, 4, 6, 6, 9, 0, 3, 4, 8, 2, 3, 1, 8, 9, 8, 9, 1, 0, 9, 9, 6, 4, 0, 9, 6, 6, 1, 3, 6, 6, 2, 9, 8, 4, 3, 5, 0, 7, 2, 1, 4, 7, 9, 8, 3, 5, 6, 0, 5, 0, 9, 0, 4, 6, 4, 2, 0, 1, 0, 8, 2, 0, 8, 7, 6, 3, 8, 5, 8, 2, 6, 6, 5, 0, 6, 7, 3, 2
Offset: 0
Examples
0.8030778709740584281843212446690348231898910996409661...
Links
- I. V. Blagouchine and E. Moreau, Analytic Method for the Computation of the Total Harmonic Distortion by the Cauchy Method of Residues. IEEE Trans. Commun., vol. 59, no. 9, pp. 2478-2491, 2011. PDF file.
- Index entries for transcendental numbers
Programs
-
MATLAB
format long; sqrt(pi^2/6-1)
-
Maple
evalf(sqrt((1/6)*Pi^2-1), 120)
-
Mathematica
RealDigits[Sqrt[Pi^2/6 - 1], 10, 120][[1]]
-
PARI
default(realprecision, 120); sqrt(Pi^2/6-1)
Formula
Equals sqrt(A013661 - 1).
Comments