A300714 Decimal expansion of the total harmonic distortion (THD) of the sawtooth signal filtered by a 1st-order low-pass filter.
3, 6, 9, 4, 8, 6, 1, 8, 2, 0, 9, 5, 2, 0, 4, 3, 7, 3, 1, 2, 0, 0, 5, 4, 6, 9, 1, 4, 2, 3, 9, 7, 6, 9, 9, 3, 6, 6, 0, 2, 3, 6, 1, 5, 8, 6, 7, 9, 0, 8, 3, 8, 2, 5, 8, 9, 1, 6, 4, 9, 1, 8, 9, 0, 0, 1, 5, 1, 7, 9, 3, 1, 4, 2, 0, 0, 6, 6, 9, 9, 8, 3, 5, 0, 8, 2, 8, 4, 2, 5, 6, 1, 0, 2, 7, 6, 7, 4, 1, 8, 9, 8, 0
Offset: 0
Examples
0.3694861820952043731200546914239769936602361586790838...
Links
- I. V. Blagouchine and E. Moreau, Analytic Method for the Computation of the Total Harmonic Distortion by the Cauchy Method of Residues. IEEE Trans. Commun., vol. 59, no. 9, pp. 2478-2491, 2011. PDF file.
Programs
-
MATLAB
format long; sqrt(pi^2/3-pi*coth(pi))
-
Maple
evalf(sqrt((1/3)*Pi^2-Pi*coth(Pi)), 120)
-
Mathematica
RealDigits[Sqrt[Pi^2/3 - Pi*Coth[Pi]], 10, 120][[1]]
-
PARI
default(realprecision, 120); sqrt(Pi^2/3-Pi/tanh(Pi))
Formula
Equals sqrt(Pi^2/3 - Pi*coth(Pi)).
Comments