A300738 Number of minimal total dominating sets in the n-cycle graph.
0, 0, 3, 4, 5, 9, 7, 4, 12, 25, 22, 25, 39, 49, 68, 100, 119, 144, 209, 289, 367, 484, 644, 841, 1130, 1521, 1983, 2601, 3480, 4624, 6107, 8100, 10717, 14161, 18807, 24964, 33004, 43681, 57918, 76729, 101639, 134689, 178364, 236196, 313007, 414736, 549289
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Cycle Graph.
- Eric Weisstein's World of Mathematics, Minimal Total Dominating Set.
- Index entries for linear recurrences with constant coefficients, signature (0,0,1,1,1,1,0,-1,-1).
Programs
-
Mathematica
Table[RootSum[-1 - # + #^3 &, #^n &] + (1 + (-1)^n) RootSum[-1 + #^2 + #^3 &, #^(n/2) &], {n, 20}] Perrin[n_] := RootSum[-1 - # + #^3 &, #^n &]; Table[With[{b = Mod[n, 2, 1]}, Perrin[n/b]^b], {n, 20}] LinearRecurrence[{0, 0, 1, 1, 1, 1, 0, -1, -1}, {0, 0, 3, 4, 5, 9, 7, 4, 12}, 20] CoefficientList[Series[x^2 (3 + 4 x + 5 x^2 + 6 x^3 - 8 x^5 - 9 x^6)/(1 - x^3 - x^4 - x^5 - x^6 + x^8 + x^9), {x, 0, 20}], x]
-
PARI
concat([0,0], Vec((3 + 4*x + 5*x^2 + 6*x^3 - 8*x^5 - 9*x^6)/((1 - x^2 - x^3)*(1 + x^2 - x^6)) + O(x^50)))