A300756 Triangle T(n,k) read by rows: number of squarefree graphs on n nodes with k components.
1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 3, 3, 1, 1, 0, 8, 5, 3, 1, 1, 0, 19, 14, 6, 3, 1, 1, 0, 57, 33, 16, 6, 3, 1, 1, 0, 186, 98, 39, 17, 6, 3, 1, 1, 0, 740, 305, 116, 41, 17, 6, 3, 1, 1, 0, 3389, 1133, 355, 122, 42, 17, 6, 3, 1, 1, 0, 18502, 4824, 1288, 373, 124, 42, 17, 6, 3, 1, 1, 0, 120221, 24575, 5332, 1343
Offset: 0
Examples
The triangle starts in row n=0 with columnes 0<=k<=n as 1 0 1 0 1 1 0 2 1 1 0 3 3 1 1 0 8 5 3 1 1 0 19 14 6 3 1 1 0 57 33 16 6 3 1 1 0 186 98 39 17 6 3 1 1 0 740 305 116 41 17 6 3 1 1 0 3389 1133 355 122 42 17 6 3 1 1 0 18502 4824 1288 373 124 42 17 6 3 1 1 0 120221 24575 5332 1343 379 125 42 17 6 3 1 1 0 932260 150292 26415 5499 1361 381 125 42 17 6 3 1 1 0 8596844 1110759 157791 26973 5554 1367 382 125 42 17 6 3 1 1 0 93762704 9876826 1146376 159799 27146 5572 1369 382 125 42 17 6 3 1 1 0 1201732437 104856709 10078812 1154493 160372 27201 5578 1370 382 125 42 17 6 3 1 1 0 17992683043 1317129728 106250470 10116666 1156565 160545 27219 5580 1370 382 125 42 17 6 3 1 1
Links
Formula
G. f.: Sum_{n >= k >= 0} T(n,k)*x^n*y^k = exp( Sum_{m>=1} F(x^m)*y^m/m ), where F(y) is the generating function for A077269. - Max Alekseyev, Mar 30 2022
Comments