A300782 Number of symmetrically distinct sublattices (supercells, superlattices, HNFs) of the simple cubic lattice of index n.
1, 3, 3, 9, 5, 13, 7, 24, 14, 23, 11, 49, 15, 33, 31, 66, 21, 70, 25, 89, 49, 61, 33, 162, 50, 81, 75, 137, 49, 177, 55, 193, 97, 123, 99, 296, 75, 147, 129, 312, 89, 291, 97, 269, 218, 203, 113, 534, 146, 302, 203, 357, 141, 451, 207, 508, 247, 307, 171, 789
Offset: 1
Keywords
Links
- Andrey Zabolotskiy, Table of n, a(n) for n = 1..1000
- Matt DeCross, Lattice Polytopes and Orbifolds, 2015.
- Matt DeCross, Lattice Polytopes and Orbifolds in Quiver Gauge Theories, 2015. See slides 18-21.
- Gus L. W. Hart and Rodney W. Forcade, Algorithm for generating derivative structures, Phys. Rev. B 77, 224115 (2008), DOI: 10.1103/PhysRevB.77.224115 [see Table IV].
- Materials Simulation Group, Derivative structure enumeration library
- Index entries for sequences related to sublattices
- Index entries for sequences related to cubic lattice
Crossrefs
Programs
-
Python
# see A159842 for the definition of dc, fin, per, u, N, N2 def a(n): # from DeCross's slides return (dc(u, N, N2)(n) + 6*dc(fin(1, -1, 0, 4), u, u, N)(n) + 3*dc(fin(1, 3), u, u, N)(n) + 8*dc(fin(1, 0, -1, 0, 0, 0, 0, 0, 3), u, u, per(0, 1, -1))(n) + 6*dc(fin(1, 1), u, u, per(0, 1, 0, -1))(n))//24 print([a(n) for n in range(1, 300)]) # Andrey Zabolotskiy, Sep 02 2019
Extensions
Terms a(11) and beyond from Andrey Zabolotskiy, Sep 02 2019