A300783 Number of symmetrically distinct sublattices (supercells, superlattices, HNFs) of the 3D hexagonal lattice of index n.
1, 3, 5, 11, 7, 19, 11, 34, 23, 33, 19, 77, 25, 53, 55, 104, 37, 115, 45, 143, 91, 105, 61, 272, 90, 139, 137, 235, 91, 309, 103, 331, 183, 219, 185, 516, 141, 267, 245, 544, 169, 529, 185, 485, 411, 375, 217, 952, 278, 550, 389, 647, 271, 829, 397, 922, 477
Offset: 1
Keywords
Links
- Andrey Zabolotskiy, Table of n, a(n) for n = 1..1000
- Gus L. W. Hart and Rodney W. Forcade, Algorithm for generating derivative structures, Phys. Rev. B 77, 224115 (2008), DOI: 10.1103/PhysRevB.77.224115 [see Table IV].
- Materials Simulation Group, Derivative structure enumeration library
- Kohei Shinohara, Atsuto Seko, Takashi Horiyama, Masakazu Ishihata, Junya Honda and Isao Tanaka, Enumeration of nonequivalent substitutional structures using advanced data structure of binary decision diagram, J. Chem. Phys. 153, 104109 (2020); preprint: Derivative structure enumeration using binary decision diagram, arXiv:2002.12603 [physics.comp-ph], 2020.
- Index entries for sequences related to sublattices
Programs
-
Python
# see A159842 for the definitions of dc, fin, per, u, N, N2 def a(n): return (dc(u, N, N2)(n) + 6*dc(fin(1, -1, 0, 4), u, u, N)(n) + dc(fin(1, 3), u, u, N)(n) + 4*dc(fin(1, 0, 1), u, u, per(0, 1, -1))(n)) // 12 print([a(n) for n in range(1, 100)]) # Andrey Zabolotskiy, Feb 03 2020
Extensions
Terms a(11) and beyond from Andrey Zabolotskiy, Feb 03 2020