A300792 Number of ways to write n as x^2 + y^2 + z^2 + w^2, where w is a positive integer and x,y,z are nonnegative integers such that x or y or z is a square and 9*x^2 + 16*y^2 + 24*z^2 is also a square.
1, 2, 1, 2, 4, 1, 2, 2, 2, 6, 2, 3, 5, 1, 4, 1, 5, 7, 4, 5, 1, 5, 2, 1, 9, 6, 5, 3, 4, 7, 2, 2, 6, 7, 3, 5, 7, 4, 4, 6, 6, 4, 5, 3, 9, 4, 2, 1, 4, 11, 5, 9, 5, 6, 4, 1, 9, 7, 3, 6, 5, 4, 4, 2, 14, 4, 6, 5, 2, 8, 2, 7, 9, 5, 5, 4, 3, 8, 1, 4
Offset: 1
Keywords
Examples
a(6) = 1 since 6 = 1^2 + 1^2 + 0^2 + 2^2 with 1 = 1^2 and 9*1^2 + 16*1^2 + 24*0^2 = 5^2. a(14) = 1 since 14 = 1^2 + 0^2 + 3^2 + 2^2 with 1 = 1^2 and 9*1^2 + 16*0^2 + 24*3^2 = 15^2. a(728) = 1 since 728 = 10^2 + 0^2 + 12^2 + 22^2 with 0 = 0^2 and 9*10^2 + 16*0^2 + 24*12^2 = 66^2. a(959) = 1 since 959 = 25^2 + 18^2 + 3^2 + 1^2 with 25 = 5^2 and 9*25^2 + 16*18^2 + 24*3^2 = 105^2. a(1751) = 1 since 1751 = 19^2 + 25^2 + 18^2 + 21^2 with 25 = 5^2 and 9*19^2 + 16*25^2 + 24*18^2 = 145^2. a(2311) = 1 since 2311 = 1^2 + 41^2 + 23^2 + 10^2 with 1 = 1^2 and 9*1^2 + 16*41^2 + 24*23^2 = 199^2. a(6119) = 1 since 6119 = 1^2 + 5^2 + 3^2 + 78^2 with 1 = 1^2 and 9*1^2 + 16*5^2 + 24*3^2 = 25^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
- Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; tab={};Do[r=0;Do[If[(SQ[x]||SQ[y]||SQ[z])&&SQ[9x^2+16y^2+24z^2]&&SQ[n-x^2-y^2-z^2],r=r+1],{x,0,Sqrt[n-1]},{y,0,Sqrt[n-1-x^2]},{z,0,Sqrt[n-1-x^2-y^2]}];tab=Append[tab,r],{n,1,80}];Print[tab]
Comments