A300817 Smallest prime p such that p + n^2 is prime, or 0 if no such prime exists.
2, 2, 3, 2, 3, 0, 5, 0, 3, 2, 3, 0, 5, 0, 3, 2, 7, 0, 7, 0, 19, 2, 3, 0, 11, 0, 7, 0, 3, 0, 7, 0, 7, 2, 7, 0, 5, 0, 3, 2, 7, 0, 13, 0, 13, 2, 13, 0, 5, 0, 3, 0, 3, 0, 11, 0, 31, 2, 7, 0, 7, 0, 3, 0, 3, 0, 7, 0, 13, 0, 3, 0, 5, 0, 3, 0, 3, 0, 5, 0, 73, 2, 13, 0, 13, 0, 37, 0, 13, 0
Offset: 0
Keywords
Examples
For n = 16: 2 + 16^2 is not prime; 3 + 16^2 = 7*37 is not prime; 5 + 16^2 = 3*87 is not prime; 7 + 16^2 = 263 is prime, therefore a(16) = 7.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Julia
using Primes function A300817(n) p, q = 2, n * n n % 2 == 1 && return isprime(p + q) ? 2 : 0 while !isprime(p + q) p = nextprime(p + 1) end p end [A300817(n) for n in 0:89] |> println # Peter Luschny, Mar 13 2018
-
Maple
A300817 := proc(n) local p, n2; p := 2; n2 := n^2; if irem(n2, 2) = 1 and numtheory:-invphi(n2+1) = [] then return 0 fi; do if isprime(p + n2) then return p fi; p := nextprime(p) od; end: seq(A300817(n), n = 0..89); # Peter Luschny, Mar 13 2018
-
Mathematica
a[n_] := Block[{p=2}, If[OddQ[n], If[PrimeQ[n^2 + 2], 2, 0], While[! PrimeQ[n^2 + p], p = NextPrime[p]]; p]]; a /@ Range[0, 89] (* Giovanni Resta, Mar 13 2018 *)
-
PARI
A300817(n)={if(bittest(n,0), n=n^2; forprime(p=2,, isprime(2+n)&&return(p)), isprime(2+n^2)*2)} \\ M. F. Hasler, Mar 14 2018
-
Python
from sympy import nextprime, isprime def A300817(n): p, n2 = 2, n**2 if n % 2: return 2 if isprime(2+n2) else 0 while not isprime(p+n2): p = nextprime(p) return p # Chai Wah Wu, Mar 14 2018
Comments