cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A208133 Total number of subgroups of rank <= 2 of a certain class of abelian groups of order n defined as direct products of Z/(mZ) X Z/(kZ) with m|k.

Original entry on oeis.org

1, 2, 2, 8, 2, 4, 2, 12, 9, 4, 2, 16, 2, 4, 4, 31, 2, 18, 2, 16, 4, 4, 2, 24, 11, 4, 14, 16, 2, 8, 2, 42, 4, 4, 4, 72, 2, 4, 4, 24, 2, 8, 2, 16, 18, 4, 2, 62, 13, 22, 4, 16, 2, 28, 4, 24, 4, 4, 2, 32, 2, 4, 18, 90, 4, 8, 2, 16, 4, 8, 2, 108, 2, 4, 22, 16
Offset: 1

Views

Author

R. J. Mathar, Mar 29 2012

Keywords

Comments

Level function l_tau^2(n) of Bhowmik and Wu.
Records occur at 1, 2, 4, 8, 12, 16, 32, 36, 64, 72, 108, 128, 144, 288, 432, 576, 1152, 1296, 2304, 3600, 5184, 7200, 9216, 10368, 14112, 14400, 20736, 28224, 28800, 32400, 57600, ... and they are: 1, 2, 8, 12, 16, 31, 42, 72, 90, 108, 112, 116, 279, 378, 434, 810, 1044, 1302, 2025, 3069, 3780, 4158, 4644, 4872, 4914, 8910, 9450, 10530, 11484, 14322, 22275, ... - Antti Karttunen, Mar 21 2018

References

  • A. Laurincikas, The universality of Dirichlet series attached to finite Abelian groups, in "Number Theory", Proc. Turku Sympos. on Number Theory, May 31-June 4, 1999, p 179.

Crossrefs

Programs

  • Maple
    L300828 := [ 1, 0, 0, 1, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
    ] ;
    L010052 := [ 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ];
    L037213 := [ 1, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ;
    Lx := DIRICHLET(L300828,L037213) ;
    Lx := DIRICHLET(Lx,L010052) ;
    Lx := DIRICHLET(Lx,L010052) ;
    Lx := MOBIUSi(Lx) ;
    Lx := MOBIUSi(Lx) ;
    # Name of initial list L1 changed to L300828 to refer to sequence A300828 by Antti Karttunen, Mar 21 2018
  • PARI
    A037213(n) = if(issquare(n),sqrtint(n),0);
    A300828(n) = { if(1==n, return(1)); my(val=1, v=factor(n), d=matsize(v)[1]); for(i=1,d, if(v[i,2] < 2 || v[i,2] > 3, return(0)); if (v[i,2] == 3, val *= -2)); return(val); };
    a208133s1(n) = sumdiv(n,d,A037213(n/d)*A300828(d));
    a208133s2(n) = sumdiv(n,d,issquare(n/d)*a208133s1(d));
    a208133s3(n) = sumdiv(n,d,issquare(n/d)*a208133s2(d));
    a208133s4(n) = sumdiv(n,d,a208133s3(d));
    A208133(n) = sumdiv(n,d,a208133s4(d)); \\ Antti Karttunen, Mar 21 2018, after R. J. Mathar's Maple code
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X + 2*X^2)/(1 - X)^3/(1 + X)^2/(1 - p*X^2))[n], ", ")) \\ Vaclav Kotesovec, Jun 18 2020

Formula

Dirichlet g.f.: zeta(s)^2*zeta(2s)^2*zeta(2s-1)*Product_{primes p} (1 + 1/p^(2s) - 2/p^(3s)).
Sum_{k=1..n} a(k) ~ c * Pi^4 * log(n)^2 * n / 144, where c = A330594 = Product_{primes p} (1 + 1/p^2 - 2/p^3) = 1.10696011195321767665117913000743959294954883365812241904313404497877733241... - Vaclav Kotesovec, Dec 18 2019
More precise asymptotics: Let f(s) = Product_{primes p} (1 + 1/p^(2*s) - 2/p^(3*s)), then Sum_{k=1..n} a(k) ~ n*Pi^2 * (Pi^2 * f(1) * log(n)^2 + 2*Pi^2 * log(n) * (f(1) * (-1 + 8*gamma - 48*log(A) + 4*log(2*Pi)) + f'(1)) + Pi^2 * (2*f(1)*(1 + 25*gamma^2 + 576*log(A)^2 + log(A) * (48 - 96*log(2*Pi)) - 8*gamma * (1 + 36*log(A) - 3*log(2*Pi)) - 4*log(2*Pi) + 4*log(2*Pi)^2 - 6*sg1) + 2*(-1 + 8*gamma - 48*log(A) + 4*log(2*Pi))*f'(1) + f''(1)) + 48*f(1)*zeta''(2)) / 144, where f(1) = A330594, f'(1) = A330594 * (-A335705) = f(1) * Sum_{primes p} = -2*(p-3) * log(p) / (p^3 + p - 2) = -0.087825458097278818094375273108270679512035928574..., f''(1) = A330594 * (A335705^2 + A335706) = f'(1)^2/f(1) + f(1) * Sum_{primes p} = 2*p*(2*p^3 - 9*p^2 - 1) * log(p)^2) / (p^3 + p - 2)^2 = 0.26722508718782634450711076996710402451611235402675360769..., zeta''(2) = A201994, A is the Glaisher-Kinkelin constant A074962, gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Jun 18 2020
Showing 1-1 of 1 results.