A208133 Total number of subgroups of rank <= 2 of a certain class of abelian groups of order n defined as direct products of Z/(mZ) X Z/(kZ) with m|k.
1, 2, 2, 8, 2, 4, 2, 12, 9, 4, 2, 16, 2, 4, 4, 31, 2, 18, 2, 16, 4, 4, 2, 24, 11, 4, 14, 16, 2, 8, 2, 42, 4, 4, 4, 72, 2, 4, 4, 24, 2, 8, 2, 16, 18, 4, 2, 62, 13, 22, 4, 16, 2, 28, 4, 24, 4, 4, 2, 32, 2, 4, 18, 90, 4, 8, 2, 16, 4, 8, 2, 108, 2, 4, 22, 16
Offset: 1
References
- A. Laurincikas, The universality of Dirichlet series attached to finite Abelian groups, in "Number Theory", Proc. Turku Sympos. on Number Theory, May 31-June 4, 1999, p 179.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- G. Bhowmik, Jie Wu, Zeta function of subgroups of abelian groups and average orders, J. reine angew. Math. 530 (2001) 1-15.
- Vaclav Kotesovec, Graph - the asymptotic ratio (1000000 terms)
Programs
-
Maple
L300828 := [ 1, 0, 0, 1, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 ] ; L010052 := [ 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]; L037213 := [ 1, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ; Lx := DIRICHLET(L300828,L037213) ; Lx := DIRICHLET(Lx,L010052) ; Lx := DIRICHLET(Lx,L010052) ; Lx := MOBIUSi(Lx) ; Lx := MOBIUSi(Lx) ; # Name of initial list L1 changed to L300828 to refer to sequence A300828 by Antti Karttunen, Mar 21 2018
-
PARI
A037213(n) = if(issquare(n),sqrtint(n),0); A300828(n) = { if(1==n, return(1)); my(val=1, v=factor(n), d=matsize(v)[1]); for(i=1,d, if(v[i,2] < 2 || v[i,2] > 3, return(0)); if (v[i,2] == 3, val *= -2)); return(val); }; a208133s1(n) = sumdiv(n,d,A037213(n/d)*A300828(d)); a208133s2(n) = sumdiv(n,d,issquare(n/d)*a208133s1(d)); a208133s3(n) = sumdiv(n,d,issquare(n/d)*a208133s2(d)); a208133s4(n) = sumdiv(n,d,a208133s3(d)); A208133(n) = sumdiv(n,d,a208133s4(d)); \\ Antti Karttunen, Mar 21 2018, after R. J. Mathar's Maple code
-
PARI
for(n=1, 100, print1(direuler(p=2, n, (1 + X + 2*X^2)/(1 - X)^3/(1 + X)^2/(1 - p*X^2))[n], ", ")) \\ Vaclav Kotesovec, Jun 18 2020
Formula
Dirichlet g.f.: zeta(s)^2*zeta(2s)^2*zeta(2s-1)*Product_{primes p} (1 + 1/p^(2s) - 2/p^(3s)).
Sum_{k=1..n} a(k) ~ c * Pi^4 * log(n)^2 * n / 144, where c = A330594 = Product_{primes p} (1 + 1/p^2 - 2/p^3) = 1.10696011195321767665117913000743959294954883365812241904313404497877733241... - Vaclav Kotesovec, Dec 18 2019
More precise asymptotics: Let f(s) = Product_{primes p} (1 + 1/p^(2*s) - 2/p^(3*s)), then Sum_{k=1..n} a(k) ~ n*Pi^2 * (Pi^2 * f(1) * log(n)^2 + 2*Pi^2 * log(n) * (f(1) * (-1 + 8*gamma - 48*log(A) + 4*log(2*Pi)) + f'(1)) + Pi^2 * (2*f(1)*(1 + 25*gamma^2 + 576*log(A)^2 + log(A) * (48 - 96*log(2*Pi)) - 8*gamma * (1 + 36*log(A) - 3*log(2*Pi)) - 4*log(2*Pi) + 4*log(2*Pi)^2 - 6*sg1) + 2*(-1 + 8*gamma - 48*log(A) + 4*log(2*Pi))*f'(1) + f''(1)) + 48*f(1)*zeta''(2)) / 144, where f(1) = A330594, f'(1) = A330594 * (-A335705) = f(1) * Sum_{primes p} = -2*(p-3) * log(p) / (p^3 + p - 2) = -0.087825458097278818094375273108270679512035928574..., f''(1) = A330594 * (A335705^2 + A335706) = f'(1)^2/f(1) + f(1) * Sum_{primes p} = 2*p*(2*p^3 - 9*p^2 - 1) * log(p)^2) / (p^3 + p - 2)^2 = 0.26722508718782634450711076996710402451611235402675360769..., zeta''(2) = A201994, A is the Glaisher-Kinkelin constant A074962, gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Jun 18 2020
Comments