cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300838 Permutation of nonnegative integers: a(n) = A057300(A003188(n)).

Original entry on oeis.org

0, 2, 3, 1, 9, 11, 10, 8, 12, 14, 15, 13, 5, 7, 6, 4, 36, 38, 39, 37, 45, 47, 46, 44, 40, 42, 43, 41, 33, 35, 34, 32, 48, 50, 51, 49, 57, 59, 58, 56, 60, 62, 63, 61, 53, 55, 54, 52, 20, 22, 23, 21, 29, 31, 30, 28, 24, 26, 27, 25, 17, 19, 18, 16, 144, 146, 147, 145, 153, 155, 154, 152, 156, 158, 159, 157, 149, 151
Offset: 0

Views

Author

Antti Karttunen and Peter Munn, Apr 15 2018

Keywords

Comments

Like in binary Gray code A003188, also in this permutation the binary expansions of a(n) and a(n+1) differ always by just a single bit-position, that is, A000120(A003987(a(n),a(n+1))) = 1 for all n >= 0. Here A003987 computes bitwise-XOR of its two arguments. This is true for any composition P(A003188(n)), where P is a permutation that permutes the bit-positions of binary expansion of n in some way.
When composed with A052330 this gives a divisor-or-multiple permutation similar to A207901 and A302781.

Crossrefs

Cf. A300839 (inverse permutation).
Cf. also A003188, A163252, A302846 for other permutations satisfying the same condition.

Programs

  • PARI
    A003188(n) = bitxor(n, n>>1);
    A057300(n) = { my(t=1, s=0); while(n>0,  if(1==(n%4),n++,if(2==(n%4),n--)); s += (n%4)*t; n >>= 2; t <<= 2); (s); };
    A300838(n) = A057300(A003188(n));

Formula

a(n) = A057300(A003188(n)).