cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300847 a(n) = 12*binomial(n, 5).

Original entry on oeis.org

0, 0, 0, 0, 0, 12, 72, 252, 672, 1512, 3024, 5544, 9504, 15444, 24024, 36036, 52416, 74256, 102816, 139536, 186048, 244188, 316008, 403788, 510048, 637560, 789360, 968760, 1179360, 1425060, 1710072, 2038932, 2416512, 2848032, 3339072, 3895584, 4523904, 5230764
Offset: 0

Views

Author

Eric W. Weisstein, Mar 13 2018

Keywords

Comments

Also the number of 5-cycles in the complete graph K_n for n >= 1.

Crossrefs

Programs

  • Mathematica
    Table[12 Binomial[n, 5], {n, 0, 20}]
    12 Binomial[Range[0, 20], 5]
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 0, 0, 0, 12, 72}, {0, 20}]
    CoefficientList[Series[12 x^5/(x - 1)^6, {x, 0, 20}], x]
  • PARI
    a(n) = 12*binomial(n, 5); \\ Altug Alkan, Mar 13 2018

Formula

G.f.: 12*x^5/(x - 1)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) + 6*a(n-4) - a(n-5).
a(n) = A052787(n)/10 = 12*A000389(n).
a(n) = (n - 4)*(n - 3)*(n - 2)*(n - 1)*n/10.