A300847 a(n) = 12*binomial(n, 5).
0, 0, 0, 0, 0, 12, 72, 252, 672, 1512, 3024, 5544, 9504, 15444, 24024, 36036, 52416, 74256, 102816, 139536, 186048, 244188, 316008, 403788, 510048, 637560, 789360, 968760, 1179360, 1425060, 1710072, 2038932, 2416512, 2848032, 3339072, 3895584, 4523904, 5230764
Offset: 0
Links
- F. Harary, B. Manvel, On the number of cycles in a graph, Matemat. casop. 21 (1971) 55-63, Theorem 2 for 5-cycles in complete graph.
- Eric Weisstein's World of Mathematics, Complete Graph
- Eric Weisstein's World of Mathematics, Graph Cycle
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Mathematica
Table[12 Binomial[n, 5], {n, 0, 20}] 12 Binomial[Range[0, 20], 5] LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 0, 0, 0, 12, 72}, {0, 20}] CoefficientList[Series[12 x^5/(x - 1)^6, {x, 0, 20}], x]
-
PARI
a(n) = 12*binomial(n, 5); \\ Altug Alkan, Mar 13 2018
Comments