A300867 a(n) is the least positive k such that k * n is a Fibbinary number (A003714).
1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 1, 3, 3, 5, 3, 11, 1, 1, 1, 7, 1, 1, 3, 3, 3, 13, 5, 3, 3, 5, 11, 11, 1, 1, 1, 39, 1, 1, 7, 7, 1, 1, 1, 3, 3, 13, 3, 7, 3, 21, 13, 23, 5, 5, 3, 3, 3, 9, 5, 11, 11, 9, 11, 43, 1, 1, 1, 35, 1, 1, 39, 15, 1, 1, 1, 31, 7, 57, 7, 7, 1
Offset: 0
Examples
The first terms, alongside the binary representation of n * a(n), are: n a(n) bin(n * a(n)) -- ---- ------------- 0 1 0 1 1 1 2 1 10 3 3 1001 4 1 100 5 1 101 6 3 10010 7 3 10101 8 1 1000 9 1 1001 10 1 1010 11 3 100001 12 3 100100 13 5 1000001 14 3 101010 15 11 10100101 16 1 10000 17 1 10001 18 1 10010 19 7 10000101 20 1 10100
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10000
- Rémy Sigrist, Colored logarithmic scatterplot of the first 1000000 terms (where the color is function of A070939(n * a(n)))
Programs
-
PARI
a(n) = forstep (k=1, oo, 2, if (bitand(k*n, 2*k*n)==0, return (k)))
Comments