cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301278 Numerator of variance of n-th row of Pascal's triangle.

Original entry on oeis.org

0, 0, 1, 4, 47, 244, 1186, 1384, 25147, 112028, 98374, 1067720, 1531401, 39249768, 166656772, 88008656, 2961699667, 12412521388, 51854046982, 108006842264, 448816369361, 3721813363288, 15401045060572, 15904199160592, 131178778841711, 1080387930269464, 4443100381114156, 9124976352166288
Offset: 0

Views

Author

N. J. A. Sloane, Mar 18 2018

Keywords

Comments

Variance here is the sample variance unbiased estimator. For population variance, see A301631.

Examples

			The first few variances are 0, 0, 1/3, 4/3, 47/10, 244/15, 1186/21, 1384/7, 25147/36, 112028/45, 98374/11, 1067720/33, 1531401/13, 39249768/91, 166656772/105, 88008656/15, 2961699667/136, 12412521388/153, 51854046982/171, 108006842264/95, 448816369361/105, ...
		

Crossrefs

Mean and variance of n-th row of Pascal's triangle: A084623/A000265, A301278/A301279, A054650, A301280.

Programs

  • Maple
    M:=70;
    m := n -> 2^n/(n+1);
    m1:=[seq(m(n),n=0..M)]; # A084623/A000265
    v := n -> (1/n) * add((binomial(n,i) - m(n))^2, i=0..n );
    v1:= [0, 0, seq(v(n),n=2..60)]; # A301278/A301279
  • PARI
    a(n) = if(n==0, 0, numerator(binomial(2*n,n)/n - 4^n/(n*(n+1)))); \\ Altug Alkan, Mar 25 2018
  • Python
    from fractions import Fraction
    from sympy import binomial
    def A301278(n):
        return (Fraction(int(binomial(2*n,n)))/n - Fraction(4**n)/(n*(n+1))).numerator if n > 0 else 0 # Chai Wah Wu, Mar 23 2018
    

Formula

a(0) = 0; a(n) = numerator of binomial(2n,n)/n - 4^n/(n*(n+1)) for n >= 1. - Chai Wah Wu, Mar 23 2018