A301278 Numerator of variance of n-th row of Pascal's triangle.
0, 0, 1, 4, 47, 244, 1186, 1384, 25147, 112028, 98374, 1067720, 1531401, 39249768, 166656772, 88008656, 2961699667, 12412521388, 51854046982, 108006842264, 448816369361, 3721813363288, 15401045060572, 15904199160592, 131178778841711, 1080387930269464, 4443100381114156, 9124976352166288
Offset: 0
Examples
The first few variances are 0, 0, 1/3, 4/3, 47/10, 244/15, 1186/21, 1384/7, 25147/36, 112028/45, 98374/11, 1067720/33, 1531401/13, 39249768/91, 166656772/105, 88008656/15, 2961699667/136, 12412521388/153, 51854046982/171, 108006842264/95, 448816369361/105, ...
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..1659
- Simon Demers, Taylor's Law Holds for Finite OEIS Integer Sequences and Binomial Coefficients, American Statistician, online: 19 Jan 2018.
Crossrefs
Programs
-
Maple
M:=70; m := n -> 2^n/(n+1); m1:=[seq(m(n),n=0..M)]; # A084623/A000265 v := n -> (1/n) * add((binomial(n,i) - m(n))^2, i=0..n ); v1:= [0, 0, seq(v(n),n=2..60)]; # A301278/A301279
-
PARI
a(n) = if(n==0, 0, numerator(binomial(2*n,n)/n - 4^n/(n*(n+1)))); \\ Altug Alkan, Mar 25 2018
-
Python
from fractions import Fraction from sympy import binomial def A301278(n): return (Fraction(int(binomial(2*n,n)))/n - Fraction(4**n)/(n*(n+1))).numerator if n > 0 else 0 # Chai Wah Wu, Mar 23 2018
Formula
a(0) = 0; a(n) = numerator of binomial(2n,n)/n - 4^n/(n*(n+1)) for n >= 1. - Chai Wah Wu, Mar 23 2018
Comments