cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A301389 Decimal expansion of a constant derived from the differential equation L(x,y) = x * (1 + y*x*L'(x,y)) / (1 + x*L'(x,y)).

Original entry on oeis.org

2, 8, 4, 5, 3, 4, 4, 9, 0, 3, 2, 0, 2, 5, 4, 7, 2, 1, 7, 2, 7, 7, 8, 4, 3, 3, 6, 2, 0, 9, 0, 5, 5, 7, 0, 9, 7, 6, 6, 1, 0, 3, 6, 1, 1, 4, 9, 4, 4, 1, 4, 3, 5, 1, 4, 5, 5, 9, 1, 7, 9, 6, 0, 6, 8, 5, 3, 4, 1, 9, 6, 7, 2, 7, 6, 4, 4, 2, 7, 0, 6, 2, 3, 7, 9, 8, 4, 8, 0, 2, 9, 5, 8, 9, 1, 7, 4, 0, 6, 5, 0, 8, 2, 1, 9
Offset: 1

Views

Author

Paul D. Hanna, Mar 21 2018

Keywords

Examples

			Constant: t = 2.84534490320254721727784336209055709766103611494414\
35145591796068534196727644270623798480295891740650\
82199145990830799437319028986240326566511171283481\
64124258557293481255455658423617973823914494928144\
02390549176545225010379832242080737113084391329735\
50415116871947960699750963787855045833919347513162\
66142576403453447018744604133043007656376033045112\
82694417889680876297725614997044109272047404555831\
03178072390378468305666713745715501159999757302514\
68035430988987059516297431687872814834937381777727884...
DERIVATION.
Define L(x,y) by
L(x,y) = x * (1 + y*x*L'(x,y)) / (1 + x*L'(x,y))
where L'(x,y) = d/dx L(x,y).
Also let P(n,y) denote polynonmials in y of degree n-1 such that
L(x,y) = Sum_{n>=1} P(n,y) * x^n.
Then this constant t equals the limit of the largest real root of P(n,y) = 0 as n approaches infinity.
Thus, L(x, y >= t) is a power series in x that consists entirely of nonnegative coefficients of x^n for n>=1, while L(x, y < t) will have negative coefficients somewhere in the series.
See A301305 for a list of coefficients in L(x,y).
EXAMPLES.
At y = 3: if F(x) = x * (1 + 3*x*F'(x)) / (1 + x*F'(x)), then F(x) consists entirely of positive coefficients: F(x) = x + 2*x^2 + 6*x^3 + 22*x^4 + 94*x^5 + 474*x^6 + ...
At y = 2: if G(x) = x * (1 + 2*x*G'(x)) / (1 + x*G'(x)), then G(x) has negative coefficients: G(x) = x + x^2 + x^3 - 5*x^5 - 23*x^6 - 80*x^7 - 256*x^8 + ...
SPECIAL CASE.
At y = t, the coefficients of x^n in L(x, y = t) begin:
n=1: 1
n=2: 1.845344903202547217277843362090...
n=3: 4.965250720348689500886214520628...
n=4: 15.71195398585476459000000028776...
n=5: 54.45094229315423003059802798184...
n=6: 200.0279124924168961409663175538...
n=7: 765.2331026331498880864799981776...
n=8: 3016.273391007059589064353577450...
n=9: 12164.69846021846651010262473346...
n=10: 49958.6716816427739818467452330...
n=11: 208215.160884090085951262358449...
n=12: 878422.847138400462636146391350...
n=13: 3744079.94300463735553829872990...
n=14: 16098391.4459329863609360479668...
n=15: 69742236.3957366708693190076620...
n=16: 304134288.424775677905888472068...
n=17: 1333972959.55625603969319662400...
n=18: 5881057391.40269421518919556298...
n=19: 26046610024.3815379282982965072...
n=20: 115832831858.530165463839650824...
...
Series L(x,y) possesses the minimal nonnegative set of coefficients at y = t.
Incidentally, function L(x,y) satisfies
[x^n] exp(-n*L(x,y)) = ((y-1)*(n-1) - 1) [x^(n-1)] exp(-n*L(x,y)) for n>=1.
From _Vaclav Kotesovec_, Mar 22 2018: (Start)
Coefficient of [x^n] in L(x, y = t) is asymptotic to c * d^n / n^(3/2), where
d = 4.800584821563937430105758334563754815745511567342145151930777466927565...
c = 0.2473442204028460217878828954759832163023065757240699086838139... (End)
		

Crossrefs

Cf. A301305 (L(x,y)).
Showing 1-1 of 1 results.