cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A304825 Sum of binomial(Y(2,p), 2) over the partitions p of n, where Y(2,p) is the number of part sizes with multiplicity 2 or greater in p.

Original entry on oeis.org

1, 1, 3, 4, 9, 12, 22, 30, 50, 68, 105, 142, 210, 281, 400, 531, 736, 967, 1311, 1707, 2274, 2935, 3851, 4930, 6389, 8116, 10402, 13121, 16658, 20872, 26275, 32719, 40880, 50613, 62807, 77343, 95389, 116874, 143331, 174789, 213251, 258903, 314367, 380079, 459462
Offset: 6

Views

Author

Emily Anible, May 19 2018

Keywords

Examples

			For a(8), we sum over the partitions of eight. For each partition p, we take binomial(Y(2,p),2): that is, the number of parts with multiplicity at least two choose 2.
8................B(0,2) = 0
7,1..............B(0,2) = 0
6,2..............B(0,2) = 0
6,1,1............B(1,2) = 0
5,3..............B(0,2) = 0
5,2,1............B(0,2) = 0
5,1,1,1..........B(1,2) = 0
4,4..............B(1,2) = 0
4,3,1............B(0,2) = 0
4,2,2............B(1,2) = 0
4,2,1,1..........B(1,2) = 0
4,1,1,1,1........B(1,2) = 0
3,3,2............B(1,2) = 0
3,3,1,1..........B(2,2) = 1
3,2,2,1..........B(1,2) = 0
3,2,1,1,1........B(1,2) = 0
3,1,1,1,1,1......B(1,2) = 0
2,2,2,2..........B(1,2) = 0
2,2,2,1,1........B(2,2) = 1
2,2,1,1,1,1......B(2,2) = 1
2,1,1,1,1,1,1....B(1,2) = 0
1,1,1,1,1,1,1,1..B(1,2) = 0
---------------------------
Total.....................3
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
          binomial(`if`(n>1, 1, 0)+p, 2), add(
          b(n-i*j, i-1, `if`(j>1, 1, 0)+p), j=0..n/i))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=6..60);  # Alois P. Heinz, May 19 2018
  • Mathematica
    Array[Total[Binomial[Count[Split@#, _?(Length@# >= 2 &)], 2] & /@IntegerPartitions[#]] &, 50]
    (* Second program: *)
    b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1,
         Binomial[If[n > 1, 1, 0] + p, 2], Sum[
         b[n-i*j, i-1, If[j>1, 1, 0]+p], {j, 0, n/i}]];
    a[n_] := b[n, n, 0];
    a /@ Range[6, 60] (* Jean-François Alcover, May 30 2021, after Alois P. Heinz *)

Formula

a(n) = (A301313(n) - A024788(n))/4.
G.f.: q^6 /((1-q^2)*(1-q^4))*Product_{j>=1} 1/(1-q^j).
Showing 1-1 of 1 results.