A301364 Regular triangle where T(n,k) is the number of enriched p-trees of weight n with k leaves.
1, 1, 1, 1, 1, 2, 1, 2, 4, 5, 1, 2, 6, 11, 12, 1, 3, 10, 26, 38, 34, 1, 3, 13, 39, 87, 117, 92, 1, 4, 19, 69, 181, 339, 406, 277, 1, 4, 23, 95, 303, 707, 1198, 1311, 806, 1, 5, 30, 143, 514, 1430, 2970, 4525, 4522, 2500, 1, 5, 35, 184, 762, 2446, 6124, 11627
Offset: 1
Examples
Triangle begins: 1 1 1 1 1 2 1 2 4 5 1 2 6 11 12 1 3 10 26 38 34 1 3 13 39 87 117 92 1 4 19 69 181 339 406 277 ... The T(5,4) = 11 enriched p-trees: (((21)1)1), ((2(11))1), (((11)2)1), ((211)1), ((21)(11)), (((11)1)2), ((111)2), ((21)11), (2(11)1), ((11)21), (2111).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Crossrefs
Programs
-
Mathematica
eptrees[n_]:=Prepend[Join@@Table[Tuples[eptrees/@ptn],{ptn,Select[IntegerPartitions[n],Length[#]>1&]}],n]; Table[Length[Select[eptrees[n],Count[#,_Integer,{-1}]===k&]],{n,8},{k,n}]
-
PARI
A(n)={my(v=vector(n)); for(n=1, n, v[n] = y + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x*x^n)), n)); apply(p->Vecrev(p/y), v)} { my(T=A(10)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Aug 26 2018
Comments