A301365 Regular triangle where T(n,k) is the number of strict trees of weight n with k leaves.
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 1, 2, 4, 4, 1, 0, 1, 3, 7, 9, 7, 1, 0, 1, 3, 10, 19, 20, 11, 1, 0, 1, 4, 15, 35, 51, 43, 16, 1, 0, 1, 4, 18, 55, 104, 123, 84, 22, 1, 0, 1, 5, 25, 84, 196, 298, 284, 153, 29, 1, 0, 1, 5, 30, 120, 331, 624, 783, 614, 260, 37
Offset: 1
Examples
Triangle begins: 1 1 0 1 1 0 1 1 1 0 1 2 2 1 0 1 2 4 4 1 0 1 3 7 9 7 1 0 1 3 10 19 20 11 1 0 1 4 15 35 51 43 16 1 0 The T(7,3) = 7 strict trees: ((51)1), ((42)1), ((41)2), ((32)2), (4(21)), ((31)3), (421).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Crossrefs
Programs
-
Mathematica
strtrees[n_]:=Prepend[Join@@Table[Tuples[strtrees/@ptn],{ptn,Select[IntegerPartitions[n],Length[#]>1&&UnsameQ@@#&]}],n]; Table[Length[Select[strtrees[n],Count[#,_Integer,{-1}]===k&]],{n,12},{k,n}]
-
PARI
A(n)={my(v=vector(n)); for(n=1, n, v[n] = y + polcoef(prod(k=1, n-1, 1 + v[k]*x^k + O(x*x^n)), n)); vector(n, k, Vecrev(v[k]/y, k))} my(T=A(10));for(n=1, #T, print(T[n])) \\ Andrew Howroyd, Aug 26 2018
Comments