A301366 Regular triangle where T(n,k) is the number of same-trees of weight n with k leaves.
1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 1, 0, 0, 0, 1, 1, 1, 1, 5, 3, 3, 1, 0, 0, 0, 0, 0, 1, 1, 1, 2, 6, 12, 14, 12, 6, 1, 0, 1, 0, 3, 0, 3, 0, 2, 1, 1, 0, 0, 1, 7, 10, 10, 5, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 7, 21, 41, 58, 100, 100, 94, 48, 20
Offset: 1
Examples
Triangle begins: 1 1 1 1 0 1 1 1 2 2 1 0 0 0 1 1 1 1 5 3 3 1 0 0 0 0 0 1 1 1 2 6 12 14 12 6 1 0 1 0 3 0 3 0 2 1 1 0 0 1 7 10 10 5 3 1 0 0 0 0 0 0 0 0 0 1 1 1 3 7 21 41 58 100 100 94 48 20 The T(8,4) = 6 same-trees: (4(2(11))), (4((11)2)), ((22)(22)), ((2(11))4), (((11)2)4), (2222).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Crossrefs
Programs
-
Mathematica
sametrees[n_]:=Prepend[Join@@Table[Tuples[sametrees/@ptn],{ptn,Select[IntegerPartitions[n],Length[#]>1&&SameQ@@#&]}],n]; Table[Length[Select[sametrees[n],Count[#,_Integer,{-1}]===k&]],{n,12},{k,n}]
-
PARI
A(n)={my(v=vector(n)); for(n=1, n, v[n] = x + sumdiv(n, d, v[n/d]^d)); apply(p -> Vecrev(p/x), v)} {my(v=A(16)); for(n=1, #v, print(v[n]))} \\ Andrew Howroyd, Aug 20 2018
Comments