cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301366 Regular triangle where T(n,k) is the number of same-trees of weight n with k leaves.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 1, 0, 0, 0, 1, 1, 1, 1, 5, 3, 3, 1, 0, 0, 0, 0, 0, 1, 1, 1, 2, 6, 12, 14, 12, 6, 1, 0, 1, 0, 3, 0, 3, 0, 2, 1, 1, 0, 0, 1, 7, 10, 10, 5, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 7, 21, 41, 58, 100, 100, 94, 48, 20
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2018

Keywords

Comments

A same-tree of weight n > 0 is either a single node of weight n, or a finite sequence of two or more same-trees whose weights are all the same and sum to n.

Examples

			Triangle begins:
1
1   1
1   0   1
1   1   2   2
1   0   0   0   1
1   1   1   5   3   3
1   0   0   0   0   0   1
1   1   2   6  12  14  12   6
1   0   1   0   3   0   3   0   2
1   1   0   0   1   7  10  10   5   3
1   0   0   0   0   0   0   0   0   0   1
1   1   3   7  21  41  58 100 100  94  48  20
The T(8,4) = 6 same-trees: (4(2(11))), (4((11)2)), ((22)(22)), ((2(11))4), (((11)2)4), (2222).
		

Crossrefs

Programs

  • Mathematica
    sametrees[n_]:=Prepend[Join@@Table[Tuples[sametrees/@ptn],{ptn,Select[IntegerPartitions[n],Length[#]>1&&SameQ@@#&]}],n];
    Table[Length[Select[sametrees[n],Count[#,_Integer,{-1}]===k&]],{n,12},{k,n}]
  • PARI
    A(n)={my(v=vector(n)); for(n=1, n, v[n] = x + sumdiv(n, d, v[n/d]^d)); apply(p -> Vecrev(p/x), v)}
    {my(v=A(16)); for(n=1, #v, print(v[n]))} \\ Andrew Howroyd, Aug 20 2018