A301368 Regular triangle where T(n,k) is the number of binary enriched p-trees of weight n with k leaves.
1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 2, 4, 5, 3, 1, 3, 7, 12, 12, 6, 1, 3, 9, 19, 28, 25, 11, 1, 4, 14, 36, 65, 81, 63, 24, 1, 4, 16, 48, 107, 172, 193, 136, 47, 1, 5, 22, 75, 192, 369, 522, 522, 331, 103, 1, 5, 25, 96, 284, 643, 1108, 1420, 1292, 750, 214, 1, 6
Offset: 1
Examples
Triangle begins: 1 1 1 1 1 1 1 2 3 2 1 2 4 5 3 1 3 7 12 12 6 1 3 9 19 28 25 11 1 4 14 36 65 81 63 24 1 4 16 48 107 172 193 136 47 1 5 22 75 192 369 522 522 331 103 ... The T(6,3) = 7 binary enriched p-trees: ((41)1), ((32)1), (4(11)), ((31)2), ((22)2), (3(21)), ((21)3).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Crossrefs
Programs
-
Mathematica
bintrees[n_]:=Prepend[Join@@Table[Tuples[bintrees/@ptn],{ptn,Select[IntegerPartitions[n],Length[#]===2&]}],n]; Table[Length[Select[bintrees[n],Count[#,_Integer,{-1}]===k&]],{n,13},{k,n}]
-
PARI
A(n)={my(v=vector(n)); for(n=1, n, v[n] = y + sum(k=1, n\2, v[k]*v[n-k])); apply(p->Vecrev(p/y), v)} { my(T=A(10)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Aug 26 2018
Comments