cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301379 Number of close American football games: number of ways for the game to have n scoring plays and never be separated by more than one score after each play.

Original entry on oeis.org

1, 14, 128, 1378, 13932, 144300, 1480376, 15245184, 156756896, 1612836306, 16589928984, 170664508406, 1755592926518, 18059752212038, 185779058543356, 1911097952732140, 19659326724616886, 202234169412143472, 2080368880383488938, 21400612097499844490, 220146623069820835050
Offset: 0

Views

Author

Bryan T. Ek, Mar 19 2018

Keywords

Comments

Each play (counting untimed downs as part of the previous play) can score at most 8 points for one team.
The same as counting walks of x-length n from the origin bounded above by y=8, below by y=-8, and using the steps {[1,8],..,[1,2],[1,-2],..,[1,-8]}.

Examples

			For n=1, any step is valid. For n=2, any walk with steps of opposite direction is valid while [[1,3],[1,6]] is an example of an invalid walk.
		

Crossrefs

Programs

  • Maple
    taylor((1+10*t+13*t^2-37*t^3-40*t^4+28*t^5+26*t^6-2*t^7)/(1-4*t-59*t^2-77*t^3+170*t^4+234*t^5-92*t^6-142*t^7-4*t^8+6*t^9),t=0,N);

Formula

G.f.: (1+10*t+13*t^2-37*t^3-40*t^4+28*t^5+26*t^6-2*t^7)/(1-4*t-59*t^2-77*t^3+170*t^4+234*t^5-92*t^6-142*t^7-4*t^8+6*t^9).