A301380 Number of tied close American football games: number of ways for the game to have n scoring plays, never be separated by more than one score after each play, and be tied at the end.
1, 0, 14, 90, 1114, 10718, 113216, 1152540, 11906042, 122269186, 1258639394, 12943924960, 133168371652, 1369830663678, 14091618522696, 144958402357534, 1491181759508514, 15339664777115086, 157798158205312580, 1623258461571800764, 16698349602838663718, 171774768145224952472
Offset: 0
Examples
There are no tied games with 1 scoring play. To have tied games after 2 scoring plays requires each team to score the same number of points (7 possibilities) in each play (2 orderings): hence 14 walks.
Links
- Bryan Ek, Lattice Walk Enumeration, arXiv:1803.10920 [math.CO], 2018.
- Bryan Ek, Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics, arXiv:1804.05933 [math.CO], 2018.
Programs
-
Maple
taylor((1-4*t-45*t^2-43*t^3+98*t^4+108*t^5-24*t^6-30*t^7)/(1-4*t-59*t^2-77*t^3+170*t^4+234*t^5-92*t^6-142*t^7-4*t^8+6*t^9),t=0,N);
Formula
G.f.: (1-4*t-45*t^2-43*t^3+98*t^4+108*t^5-24*t^6-30*t^7)/(1-4*t-59*t^2-77*t^3+170*t^4+234*t^5-92*t^6-142*t^7-4*t^8+6*t^9).
Comments