cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301415 Number of terms m in A002110 such that A301413(k) * A002110(m) is in A002182.

Original entry on oeis.org

3, 3, 3, 3, 3, 3, 4, 3, 3, 5, 3, 4, 4, 5, 5, 5, 4, 3, 4, 4, 4, 6, 3, 4, 5, 4, 3, 4, 3, 7, 5, 5, 6, 9, 6, 5, 8, 6, 8, 8, 8, 6, 6, 8, 6, 5, 7, 8, 9, 5, 5, 7, 6, 5, 6, 5, 6, 5, 6, 9, 9, 6, 9, 9, 6, 6, 7, 8, 7, 7, 7, 9, 5, 10, 10, 5, 13, 9, 9, 8, 10, 10, 7, 10, 8
Offset: 1

Views

Author

Michael De Vlieger, Apr 09 2018

Keywords

Comments

Numbers m = A301414(x) * A002110(y) that are in A002182 are plotted below. Those also in A002201 are followed by asterisk.
This sequence counts the terms in each column.
1 2 3 4 5 6 7 ...
+-----------------------------------------
0 | 1
1 | 2* 4
2 | 6* 12* 24 36 48
3 | 60* 120* 180 240 360* 720
4 | 840 1260 1680 2520* 5040*
5 | 27720 55440*
6 | 720720*
...

Examples

			a(1) = 3 since A301414(1) = 1 produces 3 highly composite numbers when multiplied by primorials p_0#, p_1#, and p_2# = {1, 2, 6}.
a(2) = 3 since A301414(2) = 2 yields 3 HCNs, multiplied by p_1#, p_2#, and p_3# = {4, 12, 60}.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := With[{d = FactorInteger@ n}, If[n == 1, {0}, ReplacePart[Table[0, {PrimePi[d[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, d]]]; Take[#, 85] &@ Block[{s = a002182, a, b, c, m, u}, s = Take[s, 1000]; a = Array[{#2, #1, StringTrim[StringReplace[ToString@ #, ", " -> "."], ("{" | "}") ...] &[#3 /. {} -> 0], Times @@ MapIndexed[Prime[First@ #2]^#1 &, #3]} & @@ {#1, Boole[First@ #2 > 0] Length@ #2, DeleteCases[-1 + #2, 0] /. -1 -> 0} & @@ {s[[#]], f@ s[[#]]} &, Length@ s]; u = Union@ a[[All, -1]]; b = MapIndexed[{i_, j_, k_, #1} -> ToExpression@ StringJoin["{i,", ToString@ First@ #2, ",", " j, k}"] &, Union@ a[[All, -1]]]; c = Map[# /. b &, a]; m = Max[c[[All, 2]] ]; c = Map[Sort@ # &, SplitBy[SortBy[c, First], First]]; Total /@ Transpose@ Array[With[{t = ConstantArray[0, m]}, ReplacePart[t, Map[#2 -> 1 & @@ # &, c[[#]] ] ] ] &, Length@ c] ]