A301422 Regular triangle where T(n,k) is the number of r-trees of size n with k leaves.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 6, 8, 4, 1, 0, 1, 9, 19, 14, 5, 1, 0, 1, 12, 36, 40, 21, 6, 1, 0, 1, 16, 65, 102, 75, 30, 7, 1, 0, 1, 20, 106, 223, 224, 123, 40, 8, 1, 0, 1, 25, 168, 457, 604, 439, 191, 52, 9, 1, 0, 1, 30, 248, 847, 1433, 1346, 764, 276
Offset: 1
Examples
Triangle begins: 1 1 0 1 1 0 1 2 1 0 1 4 3 1 0 1 6 8 4 1 0 1 9 19 14 5 1 0 1 12 36 40 21 6 1 0 1 16 65 102 75 30 7 1 0 1 20 106 223 224 123 40 8 1 0 1 25 168 457 604 439 191 52 9 1 0 ... The T(6,3) = 8 r-trees: (((ooo))), (((oo)o)), (((o)oo)), (((oo))o), (((o)o)o), ((oo)(o)), (((o))oo), ((o)(o)o).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Crossrefs
Programs
-
Mathematica
rtrees[n_]:=Join@@Table[Tuples[rtrees/@y],{y,IntegerPartitions[n-1]}]; Table[Length[Select[rtrees[n],Count[#,{},{-2}]===k&]],{n,8},{k,n}]
-
PARI
A(n)={my(v=vector(n)); v[1]=y; for(n=2, n, v[n] = polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x^n)), n-1)); vector(n, k, Vecrev(v[k]/y,k))} { my(T=A(10)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Aug 26 2018
Comments