A301427 Least nonnegative integer k such that n! - n - k is prime.
0, 1, 2, 5, 10, 23, 4, 1, 2, 1, 10, 3, 32, 37, 42, 23, 82, 11, 10, 51, 66, 49, 124, 11, 16, 73, 2, 49, 30, 131, 14, 159, 78, 91, 60, 41, 34, 43, 90, 37, 66, 65, 8, 43, 32, 55, 10, 47, 128, 15, 6, 73, 6, 405, 220, 51, 78, 79, 10, 9, 38, 295, 62, 251, 124, 183, 34, 27, 680, 91, 300
Offset: 3
Keywords
Examples
a(3)=0 because 3! - 3 - 0 = 3 is prime. a(4)=1 because 4! - 4 - 1 = 19 is prime and 20 is not. a(5)=2 because 5! - 5 - 2 = 113 is prime and 114 and 115 are not prime.
Links
- Seiichi Manyama, Table of n, a(n) for n = 3..500
Programs
-
Maple
f:= proc(n) local r; r:= n!-n; r - prevprime(r) end proc: f(3):= 0: seq(f(i),i=3..100); # Robert Israel, Mar 23 2018
-
Mathematica
a[n_] := n! - NextPrime[n! - 1, -1] - n; a /@ Range[3, 100] (* Jean-François Alcover, Oct 26 2020 *)
-
PARI
a(n) = apply(x->(x-precprime(x)), n!-n); vector(99, n, a(n+2)) \\ Altug Alkan, Mar 21 2018
Formula
a(n) = A037155(n) - n.
Comments