cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301430 Decimal expansion of an analog of the Landau-Ramanujan constant for Loeschian numbers which are sums of two squares.

Original entry on oeis.org

3, 0, 2, 3, 1, 6, 1, 4, 2, 3, 5, 7, 0, 6, 5, 6, 3, 7, 9, 4, 7, 7, 6, 9, 9, 0, 0, 4, 8, 0, 1, 9, 9, 7, 1, 5, 6, 0, 2, 4, 1, 2, 7, 9, 5, 1, 8, 9, 3, 6, 9, 6, 4, 5, 4, 5, 8, 8, 6, 7, 8, 4, 1, 2, 8, 8, 8, 6, 5, 4, 4, 8, 7, 5, 2, 4, 1, 0, 5, 1, 0, 8, 9, 9, 4, 8, 7, 4, 6, 7, 8, 1, 3, 9, 7, 9, 2, 7, 2, 7, 0, 8, 5, 6, 7, 7
Offset: 0

Views

Author

Michel Waldschmidt, Mar 21 2018

Keywords

Comments

This is the decimal expansion of the number alpha such that the number of positive integers <= N which are sums of two squares and are also represented by the quadratic form x^2 + xy + y^2 is asymptotic to alpha*N*(log(N))^(-3/4).
Based on the constants Zeta(m=12,n=5,s=2) = 1.0482019036007..., Zeta(m=12,n=7,s=2) = 1.0262021468... and Zeta(m=12,n=11,s=2) = 1.01177863 ... read from arXiv:1008.2547 we have Product_{p == 5, 7, 11(mod 12)} (1-1/p^2)^(-1/2) = sqrt( Zeta(m=12,n=5,s=2) * Zeta(m=12,n=7,s=2) * Zeta(m=12,n=11,s=2) ) as a factor in the formulas. - R. J. Mathar, Feb 04 2021

Examples

			0.30231614235706563794776990048019971560241279...
		

Crossrefs

Programs

  • Maple
    Digits:= 1000: with(numtheory):
    B:= evalf(3^(1/4)*Pi^(1/2)*log(2+sqrt(3))^(1/4)/(2^(5/4)*GAMMA(1/4))):
    for t to 500 do p:=ithprime(t): if `or`(`or`(`mod`(p, 12) = 5, `mod`(p, 12) = 7), `mod`(p, 12) = 11) then B:= evalf(B/(1-1/p^2)^(1/2)) end if end do: B;
  • Mathematica
    prec := 200; B = N[(Sqrt[Pi] ((3 Log[2 + Sqrt[3]])/2)^(1/4))/(2 Gamma[1/4]), prec];
    For[n = 3, n < 50000, n++, p = Prime[n];
    If[Mod[p, 12] != 1, B = B / Sqrt[(1 - 1/p) (1 + 1/p)]]]
    Print[B] (* Peter Luschny, Mar 23 2018 *)
    (* -------------------------------------------------------------------------- *)
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[(3^(1/4)/2^(5/4)) * Pi^(1/2) * (Log[2 + Sqrt[3]])^(1/4) / Gamma[1/4] * Sqrt[Z[12, 5, 2] * Z[12, 7, 2] * Z[12, 11, 2]], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)

Formula

Equals (3^(1/4)/2^(5/4)) * Pi^(1/2) * (log(2 + sqrt(3)))^(1/4) / Gamma(1/4) * Product_{p == 5, 7, 11 (mod 12), p prime} (1 - 1/p^2)^(-1/2).
One can base the definition on p(n) = A167135(n). Setting r(n) = (Product_{k=1..n} p(k)^2) / (Product_{k=1..n} (p(k)^2 - 1)) the rational sequence r(n) starts 4/3, 3/2, 25/16, 1225/768, 29645/18432, ... -> L. Then A301430 = sqrt(L)*M with M = ((arccosh(2)/6)^(1/4)*Gamma(3/4))/(2*sqrt(Pi)). - Peter Luschny, Mar 29 2018

Extensions

Offset corrected by Vaclav Kotesovec, Mar 25 2018
a(6)-a(10) from Peter Luschny, Mar 29 2018
More digits from Ettahri article added by Vaclav Kotesovec, May 12 2020
More digits from Vaclav Kotesovec, Jan 15 2021