cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A301429 Decimal expansion of an analog of the Landau-Ramanujan constant for Loeschian numbers.

Original entry on oeis.org

6, 3, 8, 9, 0, 9, 4, 0, 5, 4, 4, 5, 3, 4, 3, 8, 8, 2, 2, 5, 4, 9, 4, 2, 6, 7, 4, 9, 2, 8, 2, 4, 5, 0, 9, 3, 7, 5, 4, 9, 7, 5, 5, 0, 8, 0, 2, 9, 1, 2, 3, 3, 4, 5, 4, 2, 1, 6, 9, 2, 3, 6, 5, 7, 0, 8, 0, 7, 6, 3, 1, 0, 0, 2, 7, 6, 4, 9, 6, 5, 8, 2, 4, 6, 8, 9, 7, 1, 7, 9, 1, 1, 2, 5, 2, 8, 6, 6, 4, 3, 8, 8, 1, 4, 1, 6
Offset: 0

Views

Author

Michel Waldschmidt, Mar 21 2018

Keywords

Comments

This is the decimal expansion of the number alpha such that the number of positive integers <= N which are represented by the quadratic form x^2 + xy + y^2 is asymptotic to alpha*N/sqrt(log(N)).

Examples

			0.638909405445343882254942674928245093754975508...
		

References

  • S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, p. 99 (K3).

Crossrefs

Programs

  • Maple
    Digits:= 1000: A:= 2^(-1/2)*3^(-1/4):
    for t to 40000 do p:= ithprime(t): if `mod`(p, 3) = 2 then
    A:= evalf(A/(1-1/p^2)^(1/2)) end if end do: A;
    # Alternative:
    z := n -> Zeta(n)/Im(polylog(n, (-1)^(2/3))):
    x := n -> (z(2^n)*(3^(2^n)-1)*sqrt(3)/2)^(1/2^n)/3:
    evalf(sqrt(mul(x(n), n=1..8))/12^(1/4), 110); # Peter Luschny, Jan 17 2021
  • Mathematica
    digits = 106;
    precision = digits + 10;
    prodeuler[p_, a_, b_, expr_] := Product[If[a <= p <= b, expr, 1], {p, Prime[Range[PrimePi[a], PrimePi[b]]]}];
    Lv3[s_] := prodeuler[p, 1, 2^(precision/s), 1/(1 - KroneckerSymbol[-3, p]*p^-s)] // N[#, precision]&;
    Lv4[s_] := 2*Im[PolyLog[s, Exp[2*I*Pi/3]]]/Sqrt[3];
    Lv[s_] := If[s >= 10000, Lv3[s], Lv4[s]];
    gv[s_] := (1 - 3^(-s))*Zeta[s]/Lv[s];
    pgv = Product[gv[2^n*2]^(2^-(n + 1)), {n, 0, 11}] // N[#, precision]&;
    RealDigits[Sqrt[pgv]/12^(1/4), 10, digits][[1]]
    (* Jean-François Alcover, Jan 12 2021, after PARI code due to Artur Jasinski *)
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Pi * Sqrt[2] / (3^(7/4) * Sqrt[Z[3, 1, 2]]), digits]], 10, digits-1][[1]]
    (* Vaclav Kotesovec, Jan 15 2021 *)
    z[n_] := Zeta[n]/Im[PolyLog[n, (-1)^(2/3)]];
    x[n_] := (z[2^n] (3^(2^n) - 1) Sqrt[3]/2)^(1/2^n)/3;
    N[Sqrt[Product[x[n], { n, 8}]]/12^(1/4), 110] (* Peter Luschny, Jan 17 2021 *)

Formula

Equals 2^(-1/2)*3^(-1/4)*Product_{p == 2 (mod 3), p prime} (1 - p^(-2))^(-1/2).
One can base the definition on p(n) = A003627(n). Setting r(n) = (Product_{k=1..n} p(k)^2) / (Product_{k=1..n} (p(k)^2 - 1)) the rational sequence r(n) starts 4/3, 25/18, 605/432, 174845/124416, ... -> L. Then A301429 = sqrt(L)/12^(1/4). - Peter Luschny, Mar 29 2018 [This L is now A333240. - Peter Luschny, Jan 14 2021]
Equals Pi*sqrt(2) / (3^(7/4) * sqrt(A175646)). - Vaclav Kotesovec, May 12 2020
Equals 12^(-1/4)*Product_{n>=0} a(-n-2)*b(2^(n+1))^(2^(-n-2)) where a(n) = 3^(2^(n-1))*(1/2-3^(-2^(-n-1))/2)^(2^n) and b(n) = zeta(n)/Im(polylog(n, (-1)^(2/3))). - Peter Luschny, Jan 14 2021

Extensions

Offset corrected by Vaclav Kotesovec, Mar 25 2018
a(6)-a(10) from Peter Luschny, Mar 29 2018
More digits from Ettahri article added by Vaclav Kotesovec, May 12 2020
More digits from Vaclav Kotesovec, Jun 27 2020

A340127 Decimal expansion of Product_{primes p == 4 (mod 5)} p^2/(p^2-1).

Original entry on oeis.org

1, 0, 0, 4, 9, 6, 0, 3, 2, 3, 9, 2, 2, 2, 9, 7, 5, 5, 8, 9, 9, 3, 7, 4, 9, 6, 2, 4, 8, 1, 0, 2, 5, 2, 1, 8, 4, 7, 9, 5, 5, 1, 0, 2, 9, 4, 1, 8, 8, 0, 2, 2, 8, 8, 0, 1, 9, 9, 5, 2, 8, 3, 7, 8, 5, 2, 1, 5, 0, 7, 1, 2, 7, 7, 0, 0, 7, 0, 0, 7, 6, 9, 8, 8, 5, 4, 3, 2, 4, 9, 1, 3, 6, 1, 1, 8, 0, 0, 6, 1, 9
Offset: 1

Views

Author

Artur Jasinski, Jan 15 2021

Keywords

Examples

			1.0049603239222975589937496248102521847955102941880228801995283785215071277...
		

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 1000; digits = 121;
    digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
    digitize[Z[5, 4, 2]]

Formula

Equals (1/C(5,4))*Pi*sqrt(3*C(5,1)*C(5,2)*C(5,3)/(5*C(5,4)*log(2+sqrt(5)))).
for definitions of Mertens constants C(5,n) see A. Languasco and A. Zaccagnini 2010.
for high precision numerical values C(5,n) see A. Languasco and A. Zaccagnini 2007.
C(5,1)=1.225238438539084580057609774749220527540595509391649938767...
C(5,2)=0.546975845411263480238301287430814037751996324100819295153...
C(5,3)=0.8059510404482678640573768602784309320812881149390108979348...
C(5,4)=1.29936454791497798816084001496426590950257497040832966201678...
Equals (1/C(5,4)^2)*Pi*sqrt(3*exp(-gamma)/(4*log(2 + sqrt(5)))), where gamma is the Euler-Mascheroni constant A001620.
Equals Sum_{k>=1} 1/A004618(k)^2. - Amiram Eldar, Jan 24 2021

A340711 Decimal expansion of Product_{primes p == 3 (mod 5)} (p^2+1)/(p^2-1).

Original entry on oeis.org

1, 2, 7, 3, 9, 8, 6, 6, 1, 3, 2, 0, 6, 8, 3, 3, 9, 2, 5, 1, 5, 8, 1, 6, 8, 3, 8, 2, 1, 3, 8, 9, 4, 7, 2, 7, 3, 4, 7, 6, 2, 7, 4, 4, 4, 6, 7, 6, 7, 3, 5, 7, 8, 9, 4, 0, 0, 2, 9, 6, 8, 1, 4, 4, 0, 9, 8, 7, 4, 8, 6, 6, 8, 1, 5, 3, 7, 7, 6, 0, 6, 9, 5, 5, 6, 2, 0, 1, 2, 2, 8, 5, 4, 3, 8, 1, 1, 4, 6, 6, 0, 7, 3, 0, 5, 9, 2, 7, 4, 0, 5, 9, 2, 2, 4, 4, 6, 8, 1, 3
Offset: 1

Views

Author

Artur Jasinski, Jan 16 2021

Keywords

Examples

			1.273986613206833925158...
		

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 1000; digits = 121;
    digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
    digitize[1/(Z[5, 3, 4]/Z[5, 3, 2]^2)]

Formula

D = Product_{primes p == 0 (mod 5)} (p^2+1)/(p^2-1) = 13/12.
E = Product_{primes p == 1 (mod 5)} (p^2+1)/(p^2-1) = A340629.
F = Product_{primes p == 2 (mod 5)} (p^2+1)/(p^2-1) = A340710.
G = Product_{primes p == 3 (mod 5)} (p^2+1)/(p^2-1) = this constant.
H = Product_{primes p == 4 (mod 5)} (p^2+1)/(p^2-1) = A340628.
D*E*F*G*H = 5/2.
E*F*G*H = 30/13.
D*E*H = sqrt(5)/2.
D*F*G = 13*sqrt(5)/12.
F*G = sqrt(5).
E*H = 6*sqrt(5)/13.
Equals Sum_{q in A004617} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021

A340665 Decimal expansion of Product_{primes p == 3 (mod 5)} p^2/(p^2-1).

Original entry on oeis.org

1, 1, 3, 5, 7, 6, 4, 8, 7, 8, 6, 6, 8, 9, 2, 1, 6, 2, 6, 8, 6, 8, 6, 4, 3, 0, 0, 9, 4, 7, 2, 0, 8, 2, 2, 8, 9, 5, 1, 1, 9, 3, 6, 4, 1, 3, 0, 0, 5, 4, 6, 8, 7, 4, 4, 1, 6, 4, 9, 9, 7, 4, 3, 0, 1, 6, 3, 4, 0, 6, 4, 3, 1, 6, 7, 2, 0, 0, 2, 9, 6, 6, 0, 9, 9, 0, 0, 6, 8, 4, 6, 0, 3, 7, 1, 9, 8, 3, 9, 6, 8, 5, 1, 9
Offset: 1

Views

Author

Artur Jasinski, Jan 15 2021

Keywords

Examples

			1.135764878668921626868643009472082289511936413...
		

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 100; digits = 50; (* Adjust as needed. *)
    digitize[c_] := RealDigits[Chop[N[c, digits+10]], 10, digits][[1]];
    digitize[Z[5, 3, 2]]

Formula

Equals Sum_{k>=1} 1/A004617(k)^2. - Amiram Eldar, Jan 24 2021

A340794 Decimal expansion of Product_{primes p == 2 (mod 5)} p^2/(p^2-1).

Original entry on oeis.org

1, 3, 6, 8, 5, 7, 2, 0, 5, 3, 8, 7, 6, 6, 4, 9, 0, 8, 5, 8, 6, 0, 7, 6, 3, 8, 9, 0, 4, 8, 3, 1, 0, 9, 9, 9, 0, 1, 7, 0, 2, 0, 7, 8, 2, 8, 8, 8, 5, 8, 9, 5, 2, 0, 5, 0, 0, 8, 5, 0, 4, 0, 2, 9, 5, 5, 6, 3, 3, 1, 1, 8, 8, 8, 1, 0, 5, 4, 2, 1, 2, 0, 9, 2, 1, 5, 6, 7, 7, 4, 9, 6, 0, 8, 0, 9, 7, 3, 8, 1, 1, 9, 4, 4, 2, 9, 3, 2, 4, 3, 5, 1, 5, 4, 0, 9, 3, 2, 2, 6
Offset: 1

Views

Author

Artur Jasinski, Jan 21 2021

Keywords

Examples

			1.36857205387664908586076389048310999017020782888589520500850402955633118881...
		

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 1000; digits = 121;
    digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
    digitize[Z[5, 2, 2]]

Formula

I = Product_{primes p == 0 (mod 5)} p^2/(p^2-1) = 25/24.
J = Product_{primes p == 1 (mod 5)} p^2/(p^2-1) = A340004.
K = Product_{primes p == 2 (mod 5)} p^2/(p^2-1) = this constant.
L = Product_{primes p == 3 (mod 5)} p^2/(p^2-1) = A340665.
M = Product_{primes p == 4 (mod 5)} p^2/(p^2-1) = A340127.
I*J*K*L*M = Pi^2/6 = zeta(2).
J*K*L*M = 4*Pi^2/25.
M = (Pi/2)*C(5,4)^(-2)*exp(-gamma/2)*sqrt(3/log(2+sqrt(5))), where gamma is the Euler-Mascheroni constant A001620 and C(5,4) is the Mertens constant = 1.29936454791497798816084...
Equals Sum_{k>=1} 1/A004616(k)^2. - Amiram Eldar, Jan 24 2021

A340710 Decimal expansion of Product_{primes p == 2 (mod 5)} (p^2+1)/(p^2-1).

Original entry on oeis.org

1, 7, 5, 5, 1, 7, 3, 8, 4, 1, 1, 6, 8, 7, 3, 7, 7, 7, 6, 6, 0, 7, 4, 7, 2, 1, 2, 2, 8, 4, 0, 5, 2, 3, 7, 0, 1, 1, 1, 5, 1, 1, 8, 1, 3, 9, 4, 5, 5, 4, 3, 9, 9, 1, 5, 5, 8, 1, 7, 9, 0, 6, 2, 1, 6, 1, 7, 5, 6, 8, 6, 2, 1, 6, 4, 6, 4, 5, 1, 1, 9, 2, 7, 5, 9, 7, 9, 9, 0, 2, 4, 8, 5, 2, 5, 6, 3, 9, 7, 6, 9, 6, 3, 6, 8, 9, 5, 1, 6, 8, 2, 5, 3, 0, 2, 5, 1, 5, 1, 1
Offset: 1

Views

Author

Artur Jasinski, Jan 16 2021

Keywords

Examples

			1.7551738411687377766074721228405237...
		

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 1000; digits = 121;
    digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
    digitize[1/(Z[5, 2, 4]/Z[5, 2, 2]^2)]

Formula

D = Product_{primes p == 0 (mod 5)} (p^2+1)/(p^2-1) = 13/12.
E = Product_{primes p == 1 (mod 5)} (p^2+1)/(p^2-1) = A340629.
F = Product_{primes p == 2 (mod 5)} (p^2+1)/(p^2-1) = this constant.
G = Product_{primes p == 3 (mod 5)} (p^2+1)/(p^2-1) = A340711.
H = Product_{primes p == 4 (mod 5)} (p^2+1)/(p^2-1) = A340628.
D*E*F*G*H = 5/2.
E*F*G*H = 30/13.
D*E*H = sqrt(5)/2.
D*F*G = 13*sqrt(5)/12.
F*G = sqrt(5).
E*H = 6*sqrt(5)/13.
Formulas by Pascal Sebah, Jan 20 2021: (Start)
Let g = sqrt(Cl2(2*Pi/5)^2+Cl2(4*Pi/5)^2) = 1.0841621352693895..., where Cl2 is the Clausen function of order 2.
E = 15*sqrt(65)*g/(13*Pi^2).
H = 6*sqrt(13)*Pi^2/(195*g). (End)
Equals Sum_{q in A004616} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021

A340866 Decimal expansion of the Mertens constant C(5,4).

Original entry on oeis.org

1, 2, 9, 9, 3, 6, 4, 5, 4, 7, 9, 1, 4, 9, 7, 7, 9, 8, 8, 1, 6, 0, 8, 4, 0, 0, 1, 4, 9, 6, 4, 2, 6, 5, 9, 0, 9, 5, 0, 2, 5, 7, 4, 9, 7, 0, 4, 0, 8, 3, 2, 9, 6, 6, 2, 0, 1, 6, 7, 8, 1, 7, 7, 0, 3, 1, 2, 9, 2, 2, 8, 7, 8, 8, 3, 5, 4, 4, 0, 3, 5, 8, 0, 6, 4, 7, 6, 4, 7, 6, 9, 7, 6, 7, 6, 5, 7, 9, 3, 0, 2, 9, 4, 0, 9, 3, 5, 5, 0, 7, 6, 3, 7, 3, 7, 4, 3, 2, 1, 5, 4, 2, 7, 1, 1, 9, 0, 7, 0, 3, 3, 5, 4, 0, 9, 8, 6, 0, 6, 1, 4, 5, 0, 3, 2, 9, 7, 2, 5, 8, 8, 4, 3, 6, 1, 1, 5, 9, 8
Offset: 1

Views

Author

Artur Jasinski, Jan 24 2021

Keywords

Comments

Data taken from Alessandro Languasco and Alessandro Zaccagnini 2007 p. 4.

Examples

			1.299364547914977988160840014964265909502574970408329662016...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.2 Meissel-Mertens constants (pp. 94-95).

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 1000; digits = 121;
    digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
    digitize[(13*Pi^2 / (24*Sqrt[5] * Exp[EulerGamma] * Log[(1 + Sqrt[5])/2]) * Z[5, 1, 2]^2 / (Z[5, 1, 4] * Z[5, 4, 4]))^(1/4)]

Formula

Equals A340839*5^(1/4)*sqrt(A340004/(2*A340127)).
Equals (13*Pi^2/(24*sqrt(5)*exp(gamma)*log((1+sqrt(5))/2))*A340629/A340809)^(1/4). - Vaclav Kotesovec, Jan 25 2021

Extensions

Corrected by Vaclav Kotesovec, Jan 25 2021
More digits from Vaclav Kotesovec, Jan 26 2021

A333239 Decimal expansion of lim_{n->infinity} (Product_{k=1..n} p(k)^2 / Product_{k=1..n} (p(k)^2 - 1)) where p(k) = A167135(k) are the primes with p mod 12 != 1.

Original entry on oeis.org

1, 6, 3, 2, 5, 0, 5, 4, 0, 2, 9, 0, 2, 5, 1, 3, 0, 7, 9, 0, 1, 0, 3, 6, 6, 2, 5, 8, 9, 3, 5, 5, 3, 7, 6, 0, 4, 9, 7, 2, 0, 1, 1, 3, 0, 0, 4, 4, 3, 2, 6, 2, 9, 2, 6, 5, 3, 1, 4, 2, 0, 3, 2, 4, 4, 2, 6, 7, 5, 7, 4, 6, 2, 7, 2, 5, 4, 0, 6, 0, 9, 2, 4, 1, 3, 2, 7, 0, 4, 2, 3, 9, 0, 3, 3, 8, 4, 0
Offset: 1

Views

Author

Peter Luschny, May 13 2020

Keywords

Examples

			1.63250540290251307901036625893553760497201130044326292653142032442675746272540...
		

Crossrefs

Formula

A340552 Decimal expansion of Product_{primes p == 5, 7, 11 (mod 12)} 1/(1 - 1/p^2).

Original entry on oeis.org

1, 0, 8, 8, 3, 3, 6, 9, 3, 5, 2, 6, 8, 3, 4, 2, 0, 5, 2, 6, 7, 3, 5, 7, 7, 5, 0, 5, 9, 5, 7, 0, 2, 5, 0, 6, 9, 9, 8, 1, 3, 4, 0, 8, 6, 6, 9, 6, 2, 1, 7, 5, 2, 8, 4, 3, 5, 4, 2, 8, 0, 2, 1, 6, 2, 8, 4, 5, 0, 4, 9, 7, 5, 1, 5, 0, 2, 7, 0, 7, 2, 8, 2, 7, 5, 5
Offset: 0

Views

Author

Peter Luschny, Jan 19 2021

Keywords

Examples

			1.0883369352683420526735775059570250699813408669621752843542802162845...
		

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 1000; digits = 90;
    digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
    digitize[Z[12, 5, 2] Z[12, 7, 2] Z[12, 11, 2]]

Formula

A340552^(1/2) = A301430 / (3^(1/4)*Pi^(1/2)*log(2+sqrt(3))^(1/4)/(2^(5/4)* Gamma(1/4))), see É. Fouvry et al.

A333304 Decimal expansion of (arccosh(2)/6)^(1/4)*Gamma(3/4)/(2*sqrt(Pi)).

Original entry on oeis.org

2, 3, 6, 6, 1, 0, 5, 0, 5, 6, 0, 6, 5, 0, 1, 7, 5, 3, 9, 8, 9, 4, 0, 9, 2, 3, 9, 5, 4, 6, 8, 6, 9, 0, 6, 8, 4, 3, 1, 5, 6, 4, 8, 5, 7, 9, 0, 7, 9, 6, 1, 5, 4, 5, 8, 5, 0, 7, 1, 3, 7, 3, 5, 4, 3, 4, 6, 8, 2, 4, 6, 8, 8, 7, 7, 2, 8, 3, 2, 8, 2, 1, 5, 6, 7, 8, 2, 2, 9, 3, 7, 6, 5, 1, 6, 3, 1, 6, 0
Offset: 0

Views

Author

Peter Luschny, May 13 2020

Keywords

Examples

			0.236610505606501753989409239546869068431564857907961545850713735434682468877...
		

Crossrefs

Programs

  • Maple
    (log(2 + sqrt(3))/6)^(1/4)*GAMMA(3/4)/(2*sqrt(Pi)): evalf(%, 99);
  • Mathematica
    c := (Gamma[3/4] (Log[2 + Sqrt[3]] / 6)^(1/4))/(2 Sqrt[Pi]); N[c, 100]

Formula

Equals A301430 / sqrt(A333239).
Showing 1-10 of 11 results. Next