cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A340004 Decimal expansion of Product_{primes p == 1 (mod 5)} p^2/(p^2-1).

Original entry on oeis.org

1, 0, 1, 0, 9, 1, 5, 1, 6, 0, 6, 0, 1, 0, 1, 9, 5, 2, 2, 6, 0, 4, 9, 5, 6, 5, 8, 4, 2, 8, 9, 5, 1, 4, 9, 2, 0, 9, 8, 4, 5, 3, 8, 6, 2, 7, 5, 8, 1, 7, 3, 8, 5, 2, 3, 7, 3, 2, 0, 2, 4, 2, 0, 0, 8, 9, 2, 5, 1, 6, 1, 3, 7, 4, 2, 4, 5, 6, 7, 2, 6, 3, 7, 0, 9, 3, 9, 6, 1, 9, 7, 6, 9, 4, 5, 5, 8, 9, 2, 1, 8
Offset: 1

Views

Author

Artur Jasinski, Jan 15 2021

Keywords

Comments

This constant is called Euler product 2==1 modulo 5 (see Mathar's Definition 5 formula (38)) or equivalently zeta 2==1 modulo 5.

Examples

			1.01091516060101952260495658428951492...
		

Crossrefs

Programs

  • Mathematica
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z[5, 1, 2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021, took 20 minutes *)

Formula

Equals Sum_{k>=1} 1/A004615(k)^2. - Amiram Eldar, Jan 24 2021
Equals exp(-gamma/2)*Pi/(A340839^2*sqrt(5*log((1 + sqrt (5))/2))). - Artur Jasinski, Jan 30 2021

A340628 Decimal expansion of Product_{primes p == 4 (mod 5)} (p^2+1)/(p^2-1).

Original entry on oeis.org

1, 0, 0, 9, 9, 3, 5, 9, 3, 4, 8, 2, 9, 4, 0, 1, 0, 2, 7, 3, 4, 9, 0, 3, 8, 4, 8, 8, 2, 4, 1, 7, 7, 8, 1, 6, 7, 7, 1, 5, 8, 5, 8, 5, 4, 7, 5, 4, 8, 8, 0, 1, 0, 1, 3, 0, 5, 8, 1, 9, 3, 2, 7, 9, 5, 1, 1, 8, 5, 9, 2, 6, 4, 5, 3, 1, 8, 0, 1, 2, 4, 5, 8, 9, 3, 6, 3, 1, 2, 2, 6, 0, 2, 5, 8, 9, 9, 2, 9, 9, 8, 8, 6, 4, 7, 8, 1, 5, 5, 6, 2, 6, 2, 1, 3, 2, 2, 5, 4, 6, 2
Offset: 1

Views

Author

Artur Jasinski, Jan 13 2021

Keywords

Examples

			1.009935934829401027349038488241778167715858547548801013...
		

Crossrefs

Programs

  • Maple
    evalf(Re(2*Pi^2/(5*sqrt(13*((I*Pi^2*(1/150)-I*polylog(2, (-1)^(2/5)))^2+((1/150)*(11*I)*Pi^2+I*polylog(2, (-1)^(4/5)))^2)))), 120) # Vaclav Kotesovec, Jan 20 2021, after formula by Pascal Sebah
  • Mathematica
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; PrintTemporary["iteration = ", w, ", difference = ", N[difz, digits]]; w++]; Exp[sumz]);
    $MaxExtraPrecision = 1000; digits = 121; Chop[N[1/(Z[5,4,4]/Z[5,4,2]^2), digits]] (* Vaclav Kotesovec, Jan 15 2021, took over 20 minutes *)
    digits = 121; digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits][[1]];
    cl[x_] :=I(PolyLog[2,(-1)^x] - PolyLog[2,-(-1)^(1-x)]);
    A340628 :=(4 Pi^2)/(5 Sqrt[13])/ Sqrt[cl[2/5]^2 + cl[4/5]^2];
    digitize[A340628] (* Peter Luschny, Jan 23 2021 *)

Formula

Equals 6*sqrt(5)/(13*A340629).
Equals 6*sqrt(13)*Pi^2/(195*g) where g = sqrt(Cl2(2*Pi/5)^2 + Cl2(4*Pi/5)^2) = 1.0841621352693895..., and Cl2 is the Clausen function of order 2. Formula by Pascal Sebah (personal communication). - Artur Jasinski, Jan 20 2021
Equals A340127^2/A340809. - R. J. Mathar, Jan 22 2021
Equals Sum_{q in A004618} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021

Extensions

Corrected and more terms from Vaclav Kotesovec, Jan 15 2021

A340711 Decimal expansion of Product_{primes p == 3 (mod 5)} (p^2+1)/(p^2-1).

Original entry on oeis.org

1, 2, 7, 3, 9, 8, 6, 6, 1, 3, 2, 0, 6, 8, 3, 3, 9, 2, 5, 1, 5, 8, 1, 6, 8, 3, 8, 2, 1, 3, 8, 9, 4, 7, 2, 7, 3, 4, 7, 6, 2, 7, 4, 4, 4, 6, 7, 6, 7, 3, 5, 7, 8, 9, 4, 0, 0, 2, 9, 6, 8, 1, 4, 4, 0, 9, 8, 7, 4, 8, 6, 6, 8, 1, 5, 3, 7, 7, 6, 0, 6, 9, 5, 5, 6, 2, 0, 1, 2, 2, 8, 5, 4, 3, 8, 1, 1, 4, 6, 6, 0, 7, 3, 0, 5, 9, 2, 7, 4, 0, 5, 9, 2, 2, 4, 4, 6, 8, 1, 3
Offset: 1

Views

Author

Artur Jasinski, Jan 16 2021

Keywords

Examples

			1.273986613206833925158...
		

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 1000; digits = 121;
    digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
    digitize[1/(Z[5, 3, 4]/Z[5, 3, 2]^2)]

Formula

D = Product_{primes p == 0 (mod 5)} (p^2+1)/(p^2-1) = 13/12.
E = Product_{primes p == 1 (mod 5)} (p^2+1)/(p^2-1) = A340629.
F = Product_{primes p == 2 (mod 5)} (p^2+1)/(p^2-1) = A340710.
G = Product_{primes p == 3 (mod 5)} (p^2+1)/(p^2-1) = this constant.
H = Product_{primes p == 4 (mod 5)} (p^2+1)/(p^2-1) = A340628.
D*E*F*G*H = 5/2.
E*F*G*H = 30/13.
D*E*H = sqrt(5)/2.
D*F*G = 13*sqrt(5)/12.
F*G = sqrt(5).
E*H = 6*sqrt(5)/13.
Equals Sum_{q in A004617} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021

A340665 Decimal expansion of Product_{primes p == 3 (mod 5)} p^2/(p^2-1).

Original entry on oeis.org

1, 1, 3, 5, 7, 6, 4, 8, 7, 8, 6, 6, 8, 9, 2, 1, 6, 2, 6, 8, 6, 8, 6, 4, 3, 0, 0, 9, 4, 7, 2, 0, 8, 2, 2, 8, 9, 5, 1, 1, 9, 3, 6, 4, 1, 3, 0, 0, 5, 4, 6, 8, 7, 4, 4, 1, 6, 4, 9, 9, 7, 4, 3, 0, 1, 6, 3, 4, 0, 6, 4, 3, 1, 6, 7, 2, 0, 0, 2, 9, 6, 6, 0, 9, 9, 0, 0, 6, 8, 4, 6, 0, 3, 7, 1, 9, 8, 3, 9, 6, 8, 5, 1, 9
Offset: 1

Views

Author

Artur Jasinski, Jan 15 2021

Keywords

Examples

			1.135764878668921626868643009472082289511936413...
		

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 100; digits = 50; (* Adjust as needed. *)
    digitize[c_] := RealDigits[Chop[N[c, digits+10]], 10, digits][[1]];
    digitize[Z[5, 3, 2]]

Formula

Equals Sum_{k>=1} 1/A004617(k)^2. - Amiram Eldar, Jan 24 2021

A340794 Decimal expansion of Product_{primes p == 2 (mod 5)} p^2/(p^2-1).

Original entry on oeis.org

1, 3, 6, 8, 5, 7, 2, 0, 5, 3, 8, 7, 6, 6, 4, 9, 0, 8, 5, 8, 6, 0, 7, 6, 3, 8, 9, 0, 4, 8, 3, 1, 0, 9, 9, 9, 0, 1, 7, 0, 2, 0, 7, 8, 2, 8, 8, 8, 5, 8, 9, 5, 2, 0, 5, 0, 0, 8, 5, 0, 4, 0, 2, 9, 5, 5, 6, 3, 3, 1, 1, 8, 8, 8, 1, 0, 5, 4, 2, 1, 2, 0, 9, 2, 1, 5, 6, 7, 7, 4, 9, 6, 0, 8, 0, 9, 7, 3, 8, 1, 1, 9, 4, 4, 2, 9, 3, 2, 4, 3, 5, 1, 5, 4, 0, 9, 3, 2, 2, 6
Offset: 1

Views

Author

Artur Jasinski, Jan 21 2021

Keywords

Examples

			1.36857205387664908586076389048310999017020782888589520500850402955633118881...
		

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 1000; digits = 121;
    digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
    digitize[Z[5, 2, 2]]

Formula

I = Product_{primes p == 0 (mod 5)} p^2/(p^2-1) = 25/24.
J = Product_{primes p == 1 (mod 5)} p^2/(p^2-1) = A340004.
K = Product_{primes p == 2 (mod 5)} p^2/(p^2-1) = this constant.
L = Product_{primes p == 3 (mod 5)} p^2/(p^2-1) = A340665.
M = Product_{primes p == 4 (mod 5)} p^2/(p^2-1) = A340127.
I*J*K*L*M = Pi^2/6 = zeta(2).
J*K*L*M = 4*Pi^2/25.
M = (Pi/2)*C(5,4)^(-2)*exp(-gamma/2)*sqrt(3/log(2+sqrt(5))), where gamma is the Euler-Mascheroni constant A001620 and C(5,4) is the Mertens constant = 1.29936454791497798816084...
Equals Sum_{k>=1} 1/A004616(k)^2. - Amiram Eldar, Jan 24 2021

A340839 Decimal expansion of Mertens constant C(5,1).

Original entry on oeis.org

1, 2, 2, 5, 2, 3, 8, 4, 3, 8, 5, 3, 9, 0, 8, 4, 5, 8, 0, 0, 5, 7, 6, 0, 9, 7, 7, 4, 7, 4, 9, 2, 2, 0, 5, 2, 7, 5, 4, 0, 5, 9, 5, 5, 0, 9, 3, 9, 1, 6, 4, 9, 9, 3, 8, 7, 6, 7, 3, 3, 3, 6, 4, 4, 3, 0, 2, 6, 7, 3, 1, 4, 2, 9, 6, 4, 4, 1, 7, 6, 1, 9, 2, 7, 3, 8, 4, 1, 6, 1, 9, 5, 6, 2, 7, 3, 6, 5, 2, 9, 5, 6, 6, 7, 5, 6, 7, 9, 6, 2, 7, 9, 0, 4, 2, 5, 9, 6, 3, 2, 4, 0, 2, 1, 1, 0, 0, 4, 8, 0, 7, 6, 8, 7, 9, 3, 3, 7, 6, 5, 5, 0, 4, 6, 7, 8, 7, 4, 2, 6, 0, 3, 2, 5, 0, 1, 1, 5, 3
Offset: 1

Views

Author

Artur Jasinski, Jan 23 2021

Keywords

Comments

Data taken from Alessandro Languasco and Alessandro Zaccagnini 2007.

Examples

			1.225238438539084580057609774749220527540595509391649938767...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.2 Meissel-Mertens constants (pp. 94-95)

Crossrefs

Formula

A = C(5,1)=1.225238438539084580057609774749220527540595509391649938767...
B = C(5,2)=0.546975845411263480238301287430814037751996324100819295153...
C = C(5,3)=0.805951040448267864057376860278430932081288114939010897934...
D = C(5,4)=1.299364547914977988160840014964265909502574970408329662016...
A*B*C*D = 0.70182435445860646228... = (5/4)*exp(-gamma), where gamma is the Euler-Mascheroni constant A001620.
Formula from the article by Languasco and Zaccagnini, 2010, p.9:
A = ((13*sqrt(5)*Pi^2*exp(-gamma))/(150*log((1+sqrt(5))/2))*A340628/A340808)^(1/4).

Extensions

Last 11 digits corrected by Vaclav Kotesovec, Jan 25 2021
More digits from Vaclav Kotesovec, Jan 26 2021

A340710 Decimal expansion of Product_{primes p == 2 (mod 5)} (p^2+1)/(p^2-1).

Original entry on oeis.org

1, 7, 5, 5, 1, 7, 3, 8, 4, 1, 1, 6, 8, 7, 3, 7, 7, 7, 6, 6, 0, 7, 4, 7, 2, 1, 2, 2, 8, 4, 0, 5, 2, 3, 7, 0, 1, 1, 1, 5, 1, 1, 8, 1, 3, 9, 4, 5, 5, 4, 3, 9, 9, 1, 5, 5, 8, 1, 7, 9, 0, 6, 2, 1, 6, 1, 7, 5, 6, 8, 6, 2, 1, 6, 4, 6, 4, 5, 1, 1, 9, 2, 7, 5, 9, 7, 9, 9, 0, 2, 4, 8, 5, 2, 5, 6, 3, 9, 7, 6, 9, 6, 3, 6, 8, 9, 5, 1, 6, 8, 2, 5, 3, 0, 2, 5, 1, 5, 1, 1
Offset: 1

Views

Author

Artur Jasinski, Jan 16 2021

Keywords

Examples

			1.7551738411687377766074721228405237...
		

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 1000; digits = 121;
    digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
    digitize[1/(Z[5, 2, 4]/Z[5, 2, 2]^2)]

Formula

D = Product_{primes p == 0 (mod 5)} (p^2+1)/(p^2-1) = 13/12.
E = Product_{primes p == 1 (mod 5)} (p^2+1)/(p^2-1) = A340629.
F = Product_{primes p == 2 (mod 5)} (p^2+1)/(p^2-1) = this constant.
G = Product_{primes p == 3 (mod 5)} (p^2+1)/(p^2-1) = A340711.
H = Product_{primes p == 4 (mod 5)} (p^2+1)/(p^2-1) = A340628.
D*E*F*G*H = 5/2.
E*F*G*H = 30/13.
D*E*H = sqrt(5)/2.
D*F*G = 13*sqrt(5)/12.
F*G = sqrt(5).
E*H = 6*sqrt(5)/13.
Formulas by Pascal Sebah, Jan 20 2021: (Start)
Let g = sqrt(Cl2(2*Pi/5)^2+Cl2(4*Pi/5)^2) = 1.0841621352693895..., where Cl2 is the Clausen function of order 2.
E = 15*sqrt(65)*g/(13*Pi^2).
H = 6*sqrt(13)*Pi^2/(195*g). (End)
Equals Sum_{q in A004616} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021

A340809 Decimal expansion of Product_{primes p == 4 (mod 5)} 1/(1-p^(-4)).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 9, 2, 2, 6, 1, 5, 8, 1, 0, 2, 5, 7, 5, 1, 4, 1, 6, 8, 8, 0, 4, 1, 4, 3, 8, 4, 7, 1, 5, 4, 7, 5, 1, 1, 0, 1, 0, 4, 0, 4, 7, 9, 5, 3, 7, 1, 9, 6, 9, 8, 8, 5, 0, 4, 3, 5, 5, 0, 0, 7, 5, 8, 3, 4, 2, 2, 9, 7, 8, 6, 8, 4, 8, 4, 7, 9, 5, 5, 1, 5, 3, 2, 0, 9, 8, 4, 2, 4, 8, 7, 4, 4, 6, 6, 5, 2, 9, 9, 6
Offset: 1

Views

Author

R. J. Mathar, Jan 22 2021

Keywords

Comments

Equals also the same product over the primes p==9 (mod 10).

Examples

			1.0000092261581025751416880414384715475110104...
		

Crossrefs

Formula

Equals A340127 ^2/A340628
Equals Sum_{k>=1} 1/A004618(k)^4. - Amiram Eldar, Jan 24 2021

Extensions

More digits from Vaclav Kotesovec, Jan 22 2021

A340866 Decimal expansion of the Mertens constant C(5,4).

Original entry on oeis.org

1, 2, 9, 9, 3, 6, 4, 5, 4, 7, 9, 1, 4, 9, 7, 7, 9, 8, 8, 1, 6, 0, 8, 4, 0, 0, 1, 4, 9, 6, 4, 2, 6, 5, 9, 0, 9, 5, 0, 2, 5, 7, 4, 9, 7, 0, 4, 0, 8, 3, 2, 9, 6, 6, 2, 0, 1, 6, 7, 8, 1, 7, 7, 0, 3, 1, 2, 9, 2, 2, 8, 7, 8, 8, 3, 5, 4, 4, 0, 3, 5, 8, 0, 6, 4, 7, 6, 4, 7, 6, 9, 7, 6, 7, 6, 5, 7, 9, 3, 0, 2, 9, 4, 0, 9, 3, 5, 5, 0, 7, 6, 3, 7, 3, 7, 4, 3, 2, 1, 5, 4, 2, 7, 1, 1, 9, 0, 7, 0, 3, 3, 5, 4, 0, 9, 8, 6, 0, 6, 1, 4, 5, 0, 3, 2, 9, 7, 2, 5, 8, 8, 4, 3, 6, 1, 1, 5, 9, 8
Offset: 1

Views

Author

Artur Jasinski, Jan 24 2021

Keywords

Comments

Data taken from Alessandro Languasco and Alessandro Zaccagnini 2007 p. 4.

Examples

			1.299364547914977988160840014964265909502574970408329662016...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.2 Meissel-Mertens constants (pp. 94-95).

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 1000; digits = 121;
    digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
    digitize[(13*Pi^2 / (24*Sqrt[5] * Exp[EulerGamma] * Log[(1 + Sqrt[5])/2]) * Z[5, 1, 2]^2 / (Z[5, 1, 4] * Z[5, 4, 4]))^(1/4)]

Formula

Equals A340839*5^(1/4)*sqrt(A340004/(2*A340127)).
Equals (13*Pi^2/(24*sqrt(5)*exp(gamma)*log((1+sqrt(5))/2))*A340629/A340809)^(1/4). - Vaclav Kotesovec, Jan 25 2021

Extensions

Corrected by Vaclav Kotesovec, Jan 25 2021
More digits from Vaclav Kotesovec, Jan 26 2021

A340926 Decimal expansion of Product_{primes p == 2 (mod 5)} 1/(1 - 1/p^4).

Original entry on oeis.org

1, 0, 6, 7, 1, 2, 4, 7, 6, 1, 5, 0, 2, 2, 3, 4, 2, 5, 5, 6, 3, 4, 5, 8, 2, 1, 6, 3, 1, 3, 6, 1, 3, 7, 0, 7, 3, 8, 8, 5, 0, 9, 1, 7, 1, 6, 5, 2, 8, 0, 0, 6, 0, 5, 1, 5, 0, 0, 7, 6, 4, 0, 9, 9, 8, 6, 9, 2, 7, 7, 9, 4, 0, 9, 9, 7, 7, 3, 5, 5, 9, 6, 5, 1, 7, 8, 7, 3, 1, 0, 2, 7, 8, 7, 3, 5, 2, 6, 2, 3, 6, 5, 1, 6, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 27 2021

Keywords

Examples

			1.067124761502234255634582163136137073885091716528006051500764099869277...
		

Crossrefs

Formula

Equals A340794^2 / A340710.
Equals 104*Pi^4 / (9375 * A340808 * A340927 * A340809).
Equals Sum_{k>=1} 1/A004616(k)^4. - Amiram Eldar, Jan 28 2021
Showing 1-10 of 14 results. Next