cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A340127 Decimal expansion of Product_{primes p == 4 (mod 5)} p^2/(p^2-1).

Original entry on oeis.org

1, 0, 0, 4, 9, 6, 0, 3, 2, 3, 9, 2, 2, 2, 9, 7, 5, 5, 8, 9, 9, 3, 7, 4, 9, 6, 2, 4, 8, 1, 0, 2, 5, 2, 1, 8, 4, 7, 9, 5, 5, 1, 0, 2, 9, 4, 1, 8, 8, 0, 2, 2, 8, 8, 0, 1, 9, 9, 5, 2, 8, 3, 7, 8, 5, 2, 1, 5, 0, 7, 1, 2, 7, 7, 0, 0, 7, 0, 0, 7, 6, 9, 8, 8, 5, 4, 3, 2, 4, 9, 1, 3, 6, 1, 1, 8, 0, 0, 6, 1, 9
Offset: 1

Views

Author

Artur Jasinski, Jan 15 2021

Keywords

Examples

			1.0049603239222975589937496248102521847955102941880228801995283785215071277...
		

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 1000; digits = 121;
    digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
    digitize[Z[5, 4, 2]]

Formula

Equals (1/C(5,4))*Pi*sqrt(3*C(5,1)*C(5,2)*C(5,3)/(5*C(5,4)*log(2+sqrt(5)))).
for definitions of Mertens constants C(5,n) see A. Languasco and A. Zaccagnini 2010.
for high precision numerical values C(5,n) see A. Languasco and A. Zaccagnini 2007.
C(5,1)=1.225238438539084580057609774749220527540595509391649938767...
C(5,2)=0.546975845411263480238301287430814037751996324100819295153...
C(5,3)=0.8059510404482678640573768602784309320812881149390108979348...
C(5,4)=1.29936454791497798816084001496426590950257497040832966201678...
Equals (1/C(5,4)^2)*Pi*sqrt(3*exp(-gamma)/(4*log(2 + sqrt(5)))), where gamma is the Euler-Mascheroni constant A001620.
Equals Sum_{k>=1} 1/A004618(k)^2. - Amiram Eldar, Jan 24 2021

A340794 Decimal expansion of Product_{primes p == 2 (mod 5)} p^2/(p^2-1).

Original entry on oeis.org

1, 3, 6, 8, 5, 7, 2, 0, 5, 3, 8, 7, 6, 6, 4, 9, 0, 8, 5, 8, 6, 0, 7, 6, 3, 8, 9, 0, 4, 8, 3, 1, 0, 9, 9, 9, 0, 1, 7, 0, 2, 0, 7, 8, 2, 8, 8, 8, 5, 8, 9, 5, 2, 0, 5, 0, 0, 8, 5, 0, 4, 0, 2, 9, 5, 5, 6, 3, 3, 1, 1, 8, 8, 8, 1, 0, 5, 4, 2, 1, 2, 0, 9, 2, 1, 5, 6, 7, 7, 4, 9, 6, 0, 8, 0, 9, 7, 3, 8, 1, 1, 9, 4, 4, 2, 9, 3, 2, 4, 3, 5, 1, 5, 4, 0, 9, 3, 2, 2, 6
Offset: 1

Views

Author

Artur Jasinski, Jan 21 2021

Keywords

Examples

			1.36857205387664908586076389048310999017020782888589520500850402955633118881...
		

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 1000; digits = 121;
    digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
    digitize[Z[5, 2, 2]]

Formula

I = Product_{primes p == 0 (mod 5)} p^2/(p^2-1) = 25/24.
J = Product_{primes p == 1 (mod 5)} p^2/(p^2-1) = A340004.
K = Product_{primes p == 2 (mod 5)} p^2/(p^2-1) = this constant.
L = Product_{primes p == 3 (mod 5)} p^2/(p^2-1) = A340665.
M = Product_{primes p == 4 (mod 5)} p^2/(p^2-1) = A340127.
I*J*K*L*M = Pi^2/6 = zeta(2).
J*K*L*M = 4*Pi^2/25.
M = (Pi/2)*C(5,4)^(-2)*exp(-gamma/2)*sqrt(3/log(2+sqrt(5))), where gamma is the Euler-Mascheroni constant A001620 and C(5,4) is the Mertens constant = 1.29936454791497798816084...
Equals Sum_{k>=1} 1/A004616(k)^2. - Amiram Eldar, Jan 24 2021

A340839 Decimal expansion of Mertens constant C(5,1).

Original entry on oeis.org

1, 2, 2, 5, 2, 3, 8, 4, 3, 8, 5, 3, 9, 0, 8, 4, 5, 8, 0, 0, 5, 7, 6, 0, 9, 7, 7, 4, 7, 4, 9, 2, 2, 0, 5, 2, 7, 5, 4, 0, 5, 9, 5, 5, 0, 9, 3, 9, 1, 6, 4, 9, 9, 3, 8, 7, 6, 7, 3, 3, 3, 6, 4, 4, 3, 0, 2, 6, 7, 3, 1, 4, 2, 9, 6, 4, 4, 1, 7, 6, 1, 9, 2, 7, 3, 8, 4, 1, 6, 1, 9, 5, 6, 2, 7, 3, 6, 5, 2, 9, 5, 6, 6, 7, 5, 6, 7, 9, 6, 2, 7, 9, 0, 4, 2, 5, 9, 6, 3, 2, 4, 0, 2, 1, 1, 0, 0, 4, 8, 0, 7, 6, 8, 7, 9, 3, 3, 7, 6, 5, 5, 0, 4, 6, 7, 8, 7, 4, 2, 6, 0, 3, 2, 5, 0, 1, 1, 5, 3
Offset: 1

Views

Author

Artur Jasinski, Jan 23 2021

Keywords

Comments

Data taken from Alessandro Languasco and Alessandro Zaccagnini 2007.

Examples

			1.225238438539084580057609774749220527540595509391649938767...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.2 Meissel-Mertens constants (pp. 94-95)

Crossrefs

Formula

A = C(5,1)=1.225238438539084580057609774749220527540595509391649938767...
B = C(5,2)=0.546975845411263480238301287430814037751996324100819295153...
C = C(5,3)=0.805951040448267864057376860278430932081288114939010897934...
D = C(5,4)=1.299364547914977988160840014964265909502574970408329662016...
A*B*C*D = 0.70182435445860646228... = (5/4)*exp(-gamma), where gamma is the Euler-Mascheroni constant A001620.
Formula from the article by Languasco and Zaccagnini, 2010, p.9:
A = ((13*sqrt(5)*Pi^2*exp(-gamma))/(150*log((1+sqrt(5))/2))*A340628/A340808)^(1/4).

Extensions

Last 11 digits corrected by Vaclav Kotesovec, Jan 25 2021
More digits from Vaclav Kotesovec, Jan 26 2021

A340710 Decimal expansion of Product_{primes p == 2 (mod 5)} (p^2+1)/(p^2-1).

Original entry on oeis.org

1, 7, 5, 5, 1, 7, 3, 8, 4, 1, 1, 6, 8, 7, 3, 7, 7, 7, 6, 6, 0, 7, 4, 7, 2, 1, 2, 2, 8, 4, 0, 5, 2, 3, 7, 0, 1, 1, 1, 5, 1, 1, 8, 1, 3, 9, 4, 5, 5, 4, 3, 9, 9, 1, 5, 5, 8, 1, 7, 9, 0, 6, 2, 1, 6, 1, 7, 5, 6, 8, 6, 2, 1, 6, 4, 6, 4, 5, 1, 1, 9, 2, 7, 5, 9, 7, 9, 9, 0, 2, 4, 8, 5, 2, 5, 6, 3, 9, 7, 6, 9, 6, 3, 6, 8, 9, 5, 1, 6, 8, 2, 5, 3, 0, 2, 5, 1, 5, 1, 1
Offset: 1

Views

Author

Artur Jasinski, Jan 16 2021

Keywords

Examples

			1.7551738411687377766074721228405237...
		

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 1000; digits = 121;
    digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
    digitize[1/(Z[5, 2, 4]/Z[5, 2, 2]^2)]

Formula

D = Product_{primes p == 0 (mod 5)} (p^2+1)/(p^2-1) = 13/12.
E = Product_{primes p == 1 (mod 5)} (p^2+1)/(p^2-1) = A340629.
F = Product_{primes p == 2 (mod 5)} (p^2+1)/(p^2-1) = this constant.
G = Product_{primes p == 3 (mod 5)} (p^2+1)/(p^2-1) = A340711.
H = Product_{primes p == 4 (mod 5)} (p^2+1)/(p^2-1) = A340628.
D*E*F*G*H = 5/2.
E*F*G*H = 30/13.
D*E*H = sqrt(5)/2.
D*F*G = 13*sqrt(5)/12.
F*G = sqrt(5).
E*H = 6*sqrt(5)/13.
Formulas by Pascal Sebah, Jan 20 2021: (Start)
Let g = sqrt(Cl2(2*Pi/5)^2+Cl2(4*Pi/5)^2) = 1.0841621352693895..., where Cl2 is the Clausen function of order 2.
E = 15*sqrt(65)*g/(13*Pi^2).
H = 6*sqrt(13)*Pi^2/(195*g). (End)
Equals Sum_{q in A004616} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021

A340866 Decimal expansion of the Mertens constant C(5,4).

Original entry on oeis.org

1, 2, 9, 9, 3, 6, 4, 5, 4, 7, 9, 1, 4, 9, 7, 7, 9, 8, 8, 1, 6, 0, 8, 4, 0, 0, 1, 4, 9, 6, 4, 2, 6, 5, 9, 0, 9, 5, 0, 2, 5, 7, 4, 9, 7, 0, 4, 0, 8, 3, 2, 9, 6, 6, 2, 0, 1, 6, 7, 8, 1, 7, 7, 0, 3, 1, 2, 9, 2, 2, 8, 7, 8, 8, 3, 5, 4, 4, 0, 3, 5, 8, 0, 6, 4, 7, 6, 4, 7, 6, 9, 7, 6, 7, 6, 5, 7, 9, 3, 0, 2, 9, 4, 0, 9, 3, 5, 5, 0, 7, 6, 3, 7, 3, 7, 4, 3, 2, 1, 5, 4, 2, 7, 1, 1, 9, 0, 7, 0, 3, 3, 5, 4, 0, 9, 8, 6, 0, 6, 1, 4, 5, 0, 3, 2, 9, 7, 2, 5, 8, 8, 4, 3, 6, 1, 1, 5, 9, 8
Offset: 1

Views

Author

Artur Jasinski, Jan 24 2021

Keywords

Comments

Data taken from Alessandro Languasco and Alessandro Zaccagnini 2007 p. 4.

Examples

			1.299364547914977988160840014964265909502574970408329662016...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.2 Meissel-Mertens constants (pp. 94-95).

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 1000; digits = 121;
    digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
    digitize[(13*Pi^2 / (24*Sqrt[5] * Exp[EulerGamma] * Log[(1 + Sqrt[5])/2]) * Z[5, 1, 2]^2 / (Z[5, 1, 4] * Z[5, 4, 4]))^(1/4)]

Formula

Equals A340839*5^(1/4)*sqrt(A340004/(2*A340127)).
Equals (13*Pi^2/(24*sqrt(5)*exp(gamma)*log((1+sqrt(5))/2))*A340629/A340809)^(1/4). - Vaclav Kotesovec, Jan 25 2021

Extensions

Corrected by Vaclav Kotesovec, Jan 25 2021
More digits from Vaclav Kotesovec, Jan 26 2021

A340926 Decimal expansion of Product_{primes p == 2 (mod 5)} 1/(1 - 1/p^4).

Original entry on oeis.org

1, 0, 6, 7, 1, 2, 4, 7, 6, 1, 5, 0, 2, 2, 3, 4, 2, 5, 5, 6, 3, 4, 5, 8, 2, 1, 6, 3, 1, 3, 6, 1, 3, 7, 0, 7, 3, 8, 8, 5, 0, 9, 1, 7, 1, 6, 5, 2, 8, 0, 0, 6, 0, 5, 1, 5, 0, 0, 7, 6, 4, 0, 9, 9, 8, 6, 9, 2, 7, 7, 9, 4, 0, 9, 9, 7, 7, 3, 5, 5, 9, 6, 5, 1, 7, 8, 7, 3, 1, 0, 2, 7, 8, 7, 3, 5, 2, 6, 2, 3, 6, 5, 1, 6, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 27 2021

Keywords

Examples

			1.067124761502234255634582163136137073885091716528006051500764099869277...
		

Crossrefs

Formula

Equals A340794^2 / A340710.
Equals 104*Pi^4 / (9375 * A340808 * A340927 * A340809).
Equals Sum_{k>=1} 1/A004616(k)^4. - Amiram Eldar, Jan 28 2021

A340927 Decimal expansion of Product_{primes p == 3 (mod 5)} 1/(1 - 1/p^4).

Original entry on oeis.org

1, 0, 1, 2, 5, 3, 9, 5, 7, 1, 6, 4, 4, 9, 3, 5, 9, 0, 3, 5, 2, 2, 1, 0, 0, 2, 7, 2, 6, 9, 1, 1, 5, 2, 1, 4, 0, 4, 7, 8, 3, 6, 2, 8, 0, 2, 7, 8, 7, 7, 4, 9, 8, 5, 4, 8, 0, 0, 1, 3, 4, 7, 7, 2, 6, 9, 5, 3, 0, 3, 0, 6, 5, 9, 6, 3, 8, 1, 0, 3, 3, 1, 7, 5, 3, 7, 2, 3, 4, 0, 9, 4, 3, 2, 1, 6, 9, 8, 4, 4, 3, 4, 1, 5, 7
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 27 2021

Keywords

Examples

			1.012539571644935903522100272691152140478362802787749854800134772695303...
		

Crossrefs

Formula

Equals A340665^2 / A340711.
Equals 104*Pi^4 / (9375 * A340808 * A340926 * A340809).
Equals Sum_{k>=1} 1/A004617(k)^4. - Amiram Eldar, Jan 28 2021

A340857 Decimal expansion of constant K5 = 29*log(2+sqrt(5))*(Product_{primes p == 1 (mod 5)} (1-4*(2*p-1)/(p*(p+1)^2)))/(15*Pi^2).

Original entry on oeis.org

2, 6, 2, 6, 5, 2, 1, 8, 8, 7, 2, 0, 5, 3, 6, 7, 6, 6, 6, 7, 5, 9, 6, 2, 0, 1, 1, 4, 7, 2, 0, 8, 8, 3, 4, 6, 5, 3, 0, 2, 0, 4, 3, 9, 3, 0, 6, 4, 7, 4, 4, 7, 3, 9, 1, 0, 6, 8, 2, 5, 5, 1, 0, 5, 8, 7, 0, 9, 2, 6, 6, 8, 3, 8, 6, 9, 0, 2, 2, 7, 4, 1, 7, 9, 4, 1, 9, 3, 8, 3, 6, 5, 5, 2, 3, 5, 0, 0, 2, 0, 1, 0, 0, 8, 9, 1
Offset: 0

Views

Author

Artur Jasinski, Jan 24 2021

Keywords

Comments

Finch and Sebah, 2009, p. 7 (see link) call this constant K_5. K_5 is related to the Mertens constant C(5,1) (see A340839). For more references see the links in A340711. Finch and Sebah give the following definition:
Consider the asymptotic enumeration of m-th order primitive Dirichlet characters mod n. Let b_m(n) denote the count of such characters. There exists a constant 0 < K_m < oo such that Sum_{n <= N} b_m(n) ∼ K_m*N*log(N)^(d(m) - 2) as N -> oo, where d(m) is the number of divisors of m.

Examples

			0.262652188720536766675962011472088346530204393064744739106825510587...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; digits = 121; f[p_] := (1 - 4*(2*p-1)/(p*(p+1)^2));
    coefs = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, 1000}], x]];
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]]*S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    m = 2; sump = 0; difp = 1; While[Abs[difp] > 10^(-digits - 5) || difp == 0, difp = coefs[[m]]*P[5, 1, m]; sump = sump + difp; PrintTemporary[m]; m++];
    RealDigits[Chop[N[29*Log[2+Sqrt[5]]/(15*Pi^2) * Exp[sump], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 25 2021, took over 50 minutes *)

Formula

Equals (29/25)*(Product_{primes p} (1-1/p)^2*(1+gcd(p-1,5)/(p-1))) [Finch and Sebah, 2009, p. 10].

A336802 Decimal expansion of the constant Pi(5, 1) [1/(residue at 1) of the Dedekind zeta function for the cyclotomic field Q(zeta_5)].

Original entry on oeis.org

2, 9, 4, 2, 5, 8, 4, 7, 7, 2, 2, 6, 9, 2, 7, 1, 4, 9, 2, 8, 4, 2, 0, 6, 8, 8, 9, 4, 9, 2, 7, 8, 6, 5, 1, 3, 1, 8, 5, 5, 6, 3, 5, 9, 6, 2, 6, 3, 5, 7, 6, 7, 0, 7, 4, 5, 4, 2, 7, 9, 3, 7, 7, 4, 4, 1, 3, 6, 5, 4, 7, 9, 4, 3, 1, 8, 1, 6, 6, 5, 1, 4, 3, 4, 1, 9, 1, 4, 3, 1, 7, 1, 1, 7, 3, 5, 8, 6, 3, 2, 3, 1, 9, 8, 8
Offset: 1

Views

Author

Artur Jasinski, Jan 27 2021

Keywords

Comments

For general definition of constants Pi(q,a) see Alessandro Languasco and Alessandro Zaccagnini 2010 p. 19 eq (4), for this particular case see p. 25.

Examples

			2.942584772269271492842068894927865...
		

Crossrefs

Cf. A340711.

Programs

  • Mathematica
    RealDigits[25 Sqrt[5]/(4 Pi^2 Log[1/2 (1 + Sqrt[5])]), 10, 105] // First

Formula

Equals 25*sqrt(5)/(4*Pi^2*log((1+sqrt(5))/2)).

Extensions

Name corrected by Alessandro Languasco, Feb 18 2021

A338462 Decimal expansion of the constant Pi(5,4).

Original entry on oeis.org

1, 8, 3, 4, 4, 6, 0, 8, 5, 0, 9, 2, 6, 3, 7, 9, 5, 0, 3, 2, 4, 4, 4, 7, 9, 4, 3, 1, 0, 7, 5, 9, 7, 0, 3, 6, 6, 2, 5, 4, 5, 5, 5, 6, 8, 1, 9, 4, 7, 1, 5, 0, 8, 4, 3, 6, 8, 0, 9, 8, 7, 5, 6, 0, 8, 5, 4, 9, 9, 3, 4, 4, 4, 1, 2, 1, 1, 6, 5, 4, 7, 5, 9, 1, 3, 7, 1, 0, 1, 1, 6, 3, 0, 6, 4, 0, 0, 7, 5, 4, 0, 4, 7, 2
Offset: 1

Views

Author

Artur Jasinski, Jan 31 2021

Keywords

Comments

For general definition of constants Pi(q,a) see Alessandro Languasco and Alessandro Zaccagnini, 2010, p. 19 eq (4).

Examples

			1.834460850926379503244479431...
		

Crossrefs

Cf. A336802.

Programs

  • Mathematica
    RealDigits[N[Sqrt[5] Pi^2/(25 Log[(1 + Sqrt[5])/2]), 104]][[1]]
    (* 150 digits accuracy fast procedure of Alessandro Languasco to numerical counting of values Pi(q,a) personal communicated to Artur Jasinski Jan 31 2021 and published by permission *)
    Lvalue[q_, j_] := (-1/q)*Sum[DirichletCharacter[q, j, b]*PolyGamma[b/q*1.0`150], {b, 1, q - 1}];
    Lprod[q_] := For[a = 1, a < q, a++,If[GCD[a, q] == 1,
       Print["PI(", q, ",", a, ") = ",Re[Exp[-Sum[Log[Lvalue[q, j]]*(Conjugate[
               DirichletCharacter[q, j, a]]), {j, 2, EulerPhi[q]}]]]],]];For[r = 3, r <= 24, r++, Print["q = ", r]; Lprod[r]; Print["-----"]]

Formula

Let
A = Pi(5,1) = 2.9425847722692714928420688949... see A336802.
B = Pi(5,2) = 0.2707208383746805812341970398...
C = Pi(5,3) = 0.68429108588000504123233810749...
D = Pi(5,4) = 1.834460850926379503244479431... this constant.
Then
A*B*C*D = 1 (rule for all Pi(q,n) when product taken by all available q such that gcd(n,q)=1).
A*D = 5/(4*arccsch(2)^2) = 5/(4*log((1+sqrt(5))/2)^2).
B*C = 4*arccsch(2)^2/5 = (4/5)*log((1+sqrt(5))/2)^2.
A/D = 5^4/(4*Pi^4).
A = 25*sqrt(5)/(4*Pi^2*log((1+sqrt(5))/2)).
D = sqrt(5)*Pi^2/(25*log((1+sqrt(5))/2)).
(* formulas of Pascal Sebah personal communicated to Artur Jasinski Feb 01 2021 *)
B = (2/5)*sqrt(5)*log((1 + sqrt(5))/2)/exp(arctan(1/2)).
C = 2*sqrt(5)*exp(arctan(1/2))*log((1 + sqrt(5))/2)/5.
C/B = exp(2*arctan(1/2)) = exp(2*arccot(2)).
Showing 1-10 of 10 results.