cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A340839 Decimal expansion of Mertens constant C(5,1).

Original entry on oeis.org

1, 2, 2, 5, 2, 3, 8, 4, 3, 8, 5, 3, 9, 0, 8, 4, 5, 8, 0, 0, 5, 7, 6, 0, 9, 7, 7, 4, 7, 4, 9, 2, 2, 0, 5, 2, 7, 5, 4, 0, 5, 9, 5, 5, 0, 9, 3, 9, 1, 6, 4, 9, 9, 3, 8, 7, 6, 7, 3, 3, 3, 6, 4, 4, 3, 0, 2, 6, 7, 3, 1, 4, 2, 9, 6, 4, 4, 1, 7, 6, 1, 9, 2, 7, 3, 8, 4, 1, 6, 1, 9, 5, 6, 2, 7, 3, 6, 5, 2, 9, 5, 6, 6, 7, 5, 6, 7, 9, 6, 2, 7, 9, 0, 4, 2, 5, 9, 6, 3, 2, 4, 0, 2, 1, 1, 0, 0, 4, 8, 0, 7, 6, 8, 7, 9, 3, 3, 7, 6, 5, 5, 0, 4, 6, 7, 8, 7, 4, 2, 6, 0, 3, 2, 5, 0, 1, 1, 5, 3
Offset: 1

Views

Author

Artur Jasinski, Jan 23 2021

Keywords

Comments

Data taken from Alessandro Languasco and Alessandro Zaccagnini 2007.

Examples

			1.225238438539084580057609774749220527540595509391649938767...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.2 Meissel-Mertens constants (pp. 94-95)

Crossrefs

Formula

A = C(5,1)=1.225238438539084580057609774749220527540595509391649938767...
B = C(5,2)=0.546975845411263480238301287430814037751996324100819295153...
C = C(5,3)=0.805951040448267864057376860278430932081288114939010897934...
D = C(5,4)=1.299364547914977988160840014964265909502574970408329662016...
A*B*C*D = 0.70182435445860646228... = (5/4)*exp(-gamma), where gamma is the Euler-Mascheroni constant A001620.
Formula from the article by Languasco and Zaccagnini, 2010, p.9:
A = ((13*sqrt(5)*Pi^2*exp(-gamma))/(150*log((1+sqrt(5))/2))*A340628/A340808)^(1/4).

Extensions

Last 11 digits corrected by Vaclav Kotesovec, Jan 25 2021
More digits from Vaclav Kotesovec, Jan 26 2021

A335576 Decimal expansion of Mertens constant C(5,2).

Original entry on oeis.org

5, 4, 6, 9, 7, 5, 8, 4, 5, 4, 1, 1, 2, 6, 3, 4, 8, 0, 2, 3, 8, 3, 0, 1, 2, 8, 7, 4, 3, 0, 8, 1, 4, 0, 3, 7, 7, 5, 1, 9, 9, 6, 3, 2, 4, 1, 0, 0, 8, 1, 9, 2, 9, 5, 1, 5, 3, 1, 2, 7, 1, 8, 7, 1, 9, 1, 7, 5, 1, 8, 1, 1, 0, 8, 5, 7, 1, 5, 1, 6, 6, 8, 3, 3, 5, 8, 4, 0, 6, 3, 7, 2, 3, 8, 3, 5, 4, 8, 2, 3
Offset: 0

Views

Author

Artur Jasinski, Jan 26 2021

Keywords

Comments

First 100 digits from Alessandro Languasco and Alessandro Zaccagnini 2007 p. 4.

Examples

			0.546975845411263480238301287430814...
		

Crossrefs

Formula

A = C(5,1)=1.2252384385390845800576097747492205... see A340839.
B = C(5,2)=0.5469758454112634802383012874308140... this constant.
C = C(5,3)=0.8059510404482678640573768602784309... see A336798.
D = C(5,4)=1.2993645479149779881608400149642659... see A340866.
A*B*C*D = 0.70182435445860646228... = (5/4)*exp(-gamma), where gamma is the Euler-Mascheroni constant A001620.
B = sqrt(2)*5^(3/4)*sqrt(A340127)*exp(-gamma)/(4*sqrt(A340004)*A^2*C).
B = 2*A*D*log((1+sqrt(5))/2)/(C*sqrt(5)*A340794*A340665).
B = A*D*log((1+sqrt(5))/2)^2/(C*Pi*A340213^2).
From Vaclav Kotesovec, Jan 27 2021: (Start)
B*C = 5^(1/4) * exp(-gamma/2) * sqrt(log((1+sqrt(5))/2) / (2 * A340665 * A340794)).
A*D = 5^(3/4) * exp(-gamma/2) * sqrt(A340665 * A340794 / (8 * log((1+sqrt(5))/2))).
(End)

A336798 Decimal expansion of Mertens constant C(5,3).

Original entry on oeis.org

8, 0, 5, 9, 5, 1, 0, 4, 0, 4, 4, 8, 2, 6, 7, 8, 6, 4, 0, 5, 7, 3, 7, 6, 8, 6, 0, 2, 7, 8, 4, 3, 0, 9, 3, 2, 0, 8, 1, 2, 8, 8, 1, 1, 4, 9, 3, 9, 0, 1, 0, 8, 9, 7, 9, 3, 4, 8, 1, 6, 9, 4, 1, 2, 5, 2, 0, 7, 7, 6, 6, 1, 8, 8, 2, 6, 9, 8, 5, 5, 1, 3, 1, 1, 1, 9, 0, 1, 4, 4, 6, 8, 1, 0, 8, 5, 2, 6, 7, 9, 7
Offset: 0

Views

Author

Artur Jasinski, Jan 27 2021

Keywords

Comments

First 101 digits from Alessandro Languasco and Alessandro Zaccagnini 2007 p. 4.
A = C(5,1)=1.2252384385390845800576097747492205... see A340839.
B = C(5,2)=0.5469758454112634802383012874308140... see A335576.
C = C(5,3)=0.8059510404482678640573768602784309... this constant.
D = C(5,4)=1.2993645479149779881608400149642659... see A340866.

Examples

			0.80595104044826786405737686...
		

Crossrefs

Formula

For formulas see A335576.

A340213 Decimal expansion of the constant kappa(-5) = (1/2)*sqrt(sqrt(5)*log(9+4*sqrt(5))/(3*Pi))*sqrt(A340794*A340665).

Original entry on oeis.org

5, 1, 5, 9, 3, 9, 4, 8, 2, 2, 7, 9, 6, 5, 3, 4, 8, 4, 9, 5, 3, 1, 2, 5, 0, 1, 3, 9, 4, 0, 5, 5, 6, 3, 7, 2, 6, 9, 8, 1, 0, 9, 9, 9, 2, 4, 6, 8, 6, 8, 1, 4, 7, 4, 8, 5, 8, 7, 1, 7, 9, 6, 2, 5, 2, 2, 7, 4, 4, 9, 7, 1, 7, 6, 1, 9, 5, 7, 7, 2, 2, 7, 6, 1, 1, 9, 4, 3, 1, 3, 1, 6, 2, 6, 5, 8, 8, 9, 8, 3, 0, 3, 6
Offset: 0

Views

Author

Artur Jasinski, Jan 26 2021

Keywords

Comments

For general definition of the constants kappa(n) see Steven Finch 2009 p. 7, for this particular case kappa(-5) see p. 11.

Examples

			0.51593948227965348495312501394...
		

Crossrefs

Formula

Equals exp(-gamma/2)*log((1+sqrt(5))/2)*sqrt(5/Pi)/(2*C(5,2)*C(5,3)), where C(5,2) and C(5,3) are Mertens constants see A340839.
Equals 2*A340866*exp(gamma/4)*((1/5)*log((1+sqrt(5))/2))^(3/4)/sqrt(A340004).
Equals 2*A340866*exp(gamma/4)*log((1+sqrt(5))/2)/(sqrt(5*Pi)*A340884^(1/4)).
Equals 2*A340839*A340866*exp(gamma/2)*log((1+sqrt(5))/2)/sqrt(5*Pi).
Equals sqrt((1/3)*Pi*log(9+4*sqrt(5)))/(sqrt(5^(3/2)*A340004*A340127)). [Finch 2009 p. 11]
Showing 1-4 of 4 results.