cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A340711 Decimal expansion of Product_{primes p == 3 (mod 5)} (p^2+1)/(p^2-1).

Original entry on oeis.org

1, 2, 7, 3, 9, 8, 6, 6, 1, 3, 2, 0, 6, 8, 3, 3, 9, 2, 5, 1, 5, 8, 1, 6, 8, 3, 8, 2, 1, 3, 8, 9, 4, 7, 2, 7, 3, 4, 7, 6, 2, 7, 4, 4, 4, 6, 7, 6, 7, 3, 5, 7, 8, 9, 4, 0, 0, 2, 9, 6, 8, 1, 4, 4, 0, 9, 8, 7, 4, 8, 6, 6, 8, 1, 5, 3, 7, 7, 6, 0, 6, 9, 5, 5, 6, 2, 0, 1, 2, 2, 8, 5, 4, 3, 8, 1, 1, 4, 6, 6, 0, 7, 3, 0, 5, 9, 2, 7, 4, 0, 5, 9, 2, 2, 4, 4, 6, 8, 1, 3
Offset: 1

Views

Author

Artur Jasinski, Jan 16 2021

Keywords

Examples

			1.273986613206833925158...
		

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 1000; digits = 121;
    digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
    digitize[1/(Z[5, 3, 4]/Z[5, 3, 2]^2)]

Formula

D = Product_{primes p == 0 (mod 5)} (p^2+1)/(p^2-1) = 13/12.
E = Product_{primes p == 1 (mod 5)} (p^2+1)/(p^2-1) = A340629.
F = Product_{primes p == 2 (mod 5)} (p^2+1)/(p^2-1) = A340710.
G = Product_{primes p == 3 (mod 5)} (p^2+1)/(p^2-1) = this constant.
H = Product_{primes p == 4 (mod 5)} (p^2+1)/(p^2-1) = A340628.
D*E*F*G*H = 5/2.
E*F*G*H = 30/13.
D*E*H = sqrt(5)/2.
D*F*G = 13*sqrt(5)/12.
F*G = sqrt(5).
E*H = 6*sqrt(5)/13.
Equals Sum_{q in A004617} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021

A340794 Decimal expansion of Product_{primes p == 2 (mod 5)} p^2/(p^2-1).

Original entry on oeis.org

1, 3, 6, 8, 5, 7, 2, 0, 5, 3, 8, 7, 6, 6, 4, 9, 0, 8, 5, 8, 6, 0, 7, 6, 3, 8, 9, 0, 4, 8, 3, 1, 0, 9, 9, 9, 0, 1, 7, 0, 2, 0, 7, 8, 2, 8, 8, 8, 5, 8, 9, 5, 2, 0, 5, 0, 0, 8, 5, 0, 4, 0, 2, 9, 5, 5, 6, 3, 3, 1, 1, 8, 8, 8, 1, 0, 5, 4, 2, 1, 2, 0, 9, 2, 1, 5, 6, 7, 7, 4, 9, 6, 0, 8, 0, 9, 7, 3, 8, 1, 1, 9, 4, 4, 2, 9, 3, 2, 4, 3, 5, 1, 5, 4, 0, 9, 3, 2, 2, 6
Offset: 1

Views

Author

Artur Jasinski, Jan 21 2021

Keywords

Examples

			1.36857205387664908586076389048310999017020782888589520500850402955633118881...
		

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 1000; digits = 121;
    digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
    digitize[Z[5, 2, 2]]

Formula

I = Product_{primes p == 0 (mod 5)} p^2/(p^2-1) = 25/24.
J = Product_{primes p == 1 (mod 5)} p^2/(p^2-1) = A340004.
K = Product_{primes p == 2 (mod 5)} p^2/(p^2-1) = this constant.
L = Product_{primes p == 3 (mod 5)} p^2/(p^2-1) = A340665.
M = Product_{primes p == 4 (mod 5)} p^2/(p^2-1) = A340127.
I*J*K*L*M = Pi^2/6 = zeta(2).
J*K*L*M = 4*Pi^2/25.
M = (Pi/2)*C(5,4)^(-2)*exp(-gamma/2)*sqrt(3/log(2+sqrt(5))), where gamma is the Euler-Mascheroni constant A001620 and C(5,4) is the Mertens constant = 1.29936454791497798816084...
Equals Sum_{k>=1} 1/A004616(k)^2. - Amiram Eldar, Jan 24 2021

A340926 Decimal expansion of Product_{primes p == 2 (mod 5)} 1/(1 - 1/p^4).

Original entry on oeis.org

1, 0, 6, 7, 1, 2, 4, 7, 6, 1, 5, 0, 2, 2, 3, 4, 2, 5, 5, 6, 3, 4, 5, 8, 2, 1, 6, 3, 1, 3, 6, 1, 3, 7, 0, 7, 3, 8, 8, 5, 0, 9, 1, 7, 1, 6, 5, 2, 8, 0, 0, 6, 0, 5, 1, 5, 0, 0, 7, 6, 4, 0, 9, 9, 8, 6, 9, 2, 7, 7, 9, 4, 0, 9, 9, 7, 7, 3, 5, 5, 9, 6, 5, 1, 7, 8, 7, 3, 1, 0, 2, 7, 8, 7, 3, 5, 2, 6, 2, 3, 6, 5, 1, 6, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 27 2021

Keywords

Examples

			1.067124761502234255634582163136137073885091716528006051500764099869277...
		

Crossrefs

Formula

Equals A340794^2 / A340710.
Equals 104*Pi^4 / (9375 * A340808 * A340927 * A340809).
Equals Sum_{k>=1} 1/A004616(k)^4. - Amiram Eldar, Jan 28 2021

A340927 Decimal expansion of Product_{primes p == 3 (mod 5)} 1/(1 - 1/p^4).

Original entry on oeis.org

1, 0, 1, 2, 5, 3, 9, 5, 7, 1, 6, 4, 4, 9, 3, 5, 9, 0, 3, 5, 2, 2, 1, 0, 0, 2, 7, 2, 6, 9, 1, 1, 5, 2, 1, 4, 0, 4, 7, 8, 3, 6, 2, 8, 0, 2, 7, 8, 7, 7, 4, 9, 8, 5, 4, 8, 0, 0, 1, 3, 4, 7, 7, 2, 6, 9, 5, 3, 0, 3, 0, 6, 5, 9, 6, 3, 8, 1, 0, 3, 3, 1, 7, 5, 3, 7, 2, 3, 4, 0, 9, 4, 3, 2, 1, 6, 9, 8, 4, 4, 3, 4, 1, 5, 7
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 27 2021

Keywords

Examples

			1.012539571644935903522100272691152140478362802787749854800134772695303...
		

Crossrefs

Formula

Equals A340665^2 / A340711.
Equals 104*Pi^4 / (9375 * A340808 * A340926 * A340809).
Equals Sum_{k>=1} 1/A004617(k)^4. - Amiram Eldar, Jan 28 2021

A340857 Decimal expansion of constant K5 = 29*log(2+sqrt(5))*(Product_{primes p == 1 (mod 5)} (1-4*(2*p-1)/(p*(p+1)^2)))/(15*Pi^2).

Original entry on oeis.org

2, 6, 2, 6, 5, 2, 1, 8, 8, 7, 2, 0, 5, 3, 6, 7, 6, 6, 6, 7, 5, 9, 6, 2, 0, 1, 1, 4, 7, 2, 0, 8, 8, 3, 4, 6, 5, 3, 0, 2, 0, 4, 3, 9, 3, 0, 6, 4, 7, 4, 4, 7, 3, 9, 1, 0, 6, 8, 2, 5, 5, 1, 0, 5, 8, 7, 0, 9, 2, 6, 6, 8, 3, 8, 6, 9, 0, 2, 2, 7, 4, 1, 7, 9, 4, 1, 9, 3, 8, 3, 6, 5, 5, 2, 3, 5, 0, 0, 2, 0, 1, 0, 0, 8, 9, 1
Offset: 0

Views

Author

Artur Jasinski, Jan 24 2021

Keywords

Comments

Finch and Sebah, 2009, p. 7 (see link) call this constant K_5. K_5 is related to the Mertens constant C(5,1) (see A340839). For more references see the links in A340711. Finch and Sebah give the following definition:
Consider the asymptotic enumeration of m-th order primitive Dirichlet characters mod n. Let b_m(n) denote the count of such characters. There exists a constant 0 < K_m < oo such that Sum_{n <= N} b_m(n) ∼ K_m*N*log(N)^(d(m) - 2) as N -> oo, where d(m) is the number of divisors of m.

Examples

			0.262652188720536766675962011472088346530204393064744739106825510587...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; digits = 121; f[p_] := (1 - 4*(2*p-1)/(p*(p+1)^2));
    coefs = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, 1000}], x]];
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]]*S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    m = 2; sump = 0; difp = 1; While[Abs[difp] > 10^(-digits - 5) || difp == 0, difp = coefs[[m]]*P[5, 1, m]; sump = sump + difp; PrintTemporary[m]; m++];
    RealDigits[Chop[N[29*Log[2+Sqrt[5]]/(15*Pi^2) * Exp[sump], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 25 2021, took over 50 minutes *)

Formula

Equals (29/25)*(Product_{primes p} (1-1/p)^2*(1+gcd(p-1,5)/(p-1))) [Finch and Sebah, 2009, p. 10].
Showing 1-5 of 5 results.