cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301459 Number of 6-cycles in the n-folded cube graph.

Original entry on oeis.org

0, 0, 96, 320, 3200, 4480, 14336, 43008, 122880, 337920, 901120, 2342912, 5963776, 14909440, 36700160, 89128960, 213909504, 508035072, 1195376640, 2789212160, 6459228160, 14856224768, 33957085184
Offset: 2

Views

Author

Eric W. Weisstein, Mar 21 2018

Keywords

Comments

a(5) is also the number of 6-cycles in the 2-Keller graph.

Crossrefs

Cf. A052482 (4-cycles).

Programs

  • Mathematica
    Table[Piecewise[{{0, n == 3}, {96, n == 4}, {3200, n == 6}}, 2^(n - 1) n (n - 1) (n - 2)/3], {n, 2, 20}]
    Join[{0, 0, 96, 320, 3200}, LinearRecurrence[{8, -24, 32, -16}, {4480, 14336, 43008, 122880, 337920}, 14]]
    CoefficientList[Series[32 x^2 (3 - 14 x + 92 x^2 - 516 x^3 + 1456 x^4 - 1920 x^5 + 960 x^6)/(-1 + 2 x)^4, {x, 0, 20}], x]

Formula

a(n) = 2^(n - 1)*n*(n - 1)*(n - 2)/3 for n > 6.
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) for n > 10.
G.f.: 32*x^4*(3 - 14*x + 92*x^2 - 516*x^3 + 1456*x^4 - 1920*x^5 + 960*x^6)/(-1 + 2*x)^4.