A301468 a(n) = Sum_{k>=0} binomial(k^4, n)/2^(k+1).
1, 75, 272880, 4681655040, 221478589107480, 22313622005672849712, 4108665216956980742226192, 1249503956658157724969373808320, 583952821303314451291898006535866460, 397372225886096887788939487944785734626120, 377577476850495509525002042506806447493291890064
Offset: 0
Keywords
Programs
-
Mathematica
Table[Sum[Binomial[k^4, n]/2^(k+1), {k, 0, Infinity}], {n, 0, 12}] Table[Sum[StirlingS1[n, j] * HurwitzLerchPhi[1/2, -4*j, 0]/2, {j, 0, n}] / n!, {n, 0, 12}]
Formula
a(n) ~ 2^(8*n) * n^(3*n) / (exp(3*n) * (log(2))^(4*n+1)).
Comments