cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301477 T(n,k) = Sum_{j=0..n-k} H(n,j)*2^k with H(n,k) = binomial(n,k)* hypergeom([-k/2, 1/2-k/2], [2-k+n], 4), for 0 <= k <= n, triangle read by rows.

Original entry on oeis.org

1, 2, 2, 5, 6, 4, 13, 18, 16, 8, 35, 52, 56, 40, 16, 96, 150, 180, 160, 96, 32, 267, 432, 560, 568, 432, 224, 64, 750, 1246, 1708, 1904, 1680, 1120, 512, 128, 2123, 3600, 5152, 6160, 6048, 4736, 2816, 1152, 256, 6046, 10422, 15432, 19488, 20736, 18240, 12864, 6912, 2560, 512
Offset: 0

Views

Author

Peter Luschny, Mar 22 2018

Keywords

Examples

			                               1
                              2, 2
                            5, 6, 4
                         13, 18, 16, 8
                       35, 52, 56, 40, 16
                   96, 150, 180, 160, 96, 32
                267, 432, 560, 568, 432, 224, 64
          750, 1246, 1708, 1904, 1680, 1120, 512, 128
      2123, 3600, 5152, 6160, 6048, 4736, 2816, 1152, 256
		

Crossrefs

Row sums are A126932, first column A005773, diagonal A000079.
Cf. A301475 (general case).

Programs

  • Maple
    H := (n,k) -> binomial(n,k)*hypergeom([-k/2,1/2-k/2],[2-k+n], 4):
    T := (n,k) -> add(simplify(H(n,j)*2^k), j=0..n-k):
    seq(seq(T(n,k), k=0..n), n=0..9);
  • Mathematica
    s={};For[n=0,n<13,n++,For[k=0,kDetlef Meya, Oct 03 2023 *)