A301477 T(n,k) = Sum_{j=0..n-k} H(n,j)*2^k with H(n,k) = binomial(n,k)* hypergeom([-k/2, 1/2-k/2], [2-k+n], 4), for 0 <= k <= n, triangle read by rows.
1, 2, 2, 5, 6, 4, 13, 18, 16, 8, 35, 52, 56, 40, 16, 96, 150, 180, 160, 96, 32, 267, 432, 560, 568, 432, 224, 64, 750, 1246, 1708, 1904, 1680, 1120, 512, 128, 2123, 3600, 5152, 6160, 6048, 4736, 2816, 1152, 256, 6046, 10422, 15432, 19488, 20736, 18240, 12864, 6912, 2560, 512
Offset: 0
Examples
1 2, 2 5, 6, 4 13, 18, 16, 8 35, 52, 56, 40, 16 96, 150, 180, 160, 96, 32 267, 432, 560, 568, 432, 224, 64 750, 1246, 1708, 1904, 1680, 1120, 512, 128 2123, 3600, 5152, 6160, 6048, 4736, 2816, 1152, 256
Programs
-
Maple
H := (n,k) -> binomial(n,k)*hypergeom([-k/2,1/2-k/2],[2-k+n], 4): T := (n,k) -> add(simplify(H(n,j)*2^k), j=0..n-k): seq(seq(T(n,k), k=0..n), n=0..9);
-
Mathematica
s={};For[n=0,n<13,n++,For[k=0,k
Detlef Meya, Oct 03 2023 *)