cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301499 Total sum of the hook lengths over all partitions of 2n-1 having exactly n parts.

Original entry on oeis.org

1, 5, 22, 56, 139, 269, 554, 956, 1724, 2830, 4686, 7286, 11539, 17261, 26076, 38130, 55753, 79385, 113350, 158152, 220883, 303346, 415752, 562264, 759601, 1013728, 1350404, 1782342, 2346390, 3064045, 3992698, 5165042, 6666529, 8552739, 10944782, 13932362
Offset: 1

Views

Author

Alois P. Heinz, Mar 22 2018

Keywords

Crossrefs

Cf. A180681.

Programs

  • Maple
    f:= n-> (n-1)*n/2:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n+f(n)],
          b(n, i-1)+(p-> p+[0, p[1]*(n+f(i))])(b(n-i, min(n-i, i))))
        end:
    a:= n-> (p-> p[1]*(2*n-1+f(n))+p[2])(b(n-1$2)):
    seq(a(n), n=1..45);
  • Mathematica
    f[n_] := n(n-1)/2;
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {1, n + f[n]}, b[n, i - 1] + Function[p, p + {0, p[[1]] (n + f[i])}][b[n - i, Min[n - i, i]]]];
    a[n_] := Function[p, p[[1]] (2n - 1 + f[n]) + p[[2]]][b[n - 1, n - 1]];
    Array[a, 45] (* Jean-François Alcover, Dec 12 2020, after Alois P. Heinz *)

Formula

a(n) = A180681(2*n-1,n).
a(n) ~ exp(Pi*sqrt(2*n/3)) * n / (8*sqrt(3)). - Vaclav Kotesovec, May 27 2018