A301503 Number of compositions (ordered partitions) of n into square parts (A000290) such that no two adjacent parts are equal (Carlitz compositions).
1, 1, 0, 0, 1, 2, 1, 0, 0, 2, 4, 2, 0, 2, 7, 8, 4, 3, 7, 14, 16, 11, 9, 18, 32, 35, 30, 32, 49, 74, 87, 83, 84, 120, 178, 209, 205, 219, 305, 434, 515, 523, 572, 785, 1080, 1255, 1303, 1488, 2002, 2644, 3058, 3284, 3849, 5077, 6518, 7525, 8319, 9927, 12803, 16051, 18623, 21081
Offset: 0
Keywords
Examples
a(10) = 4 because we have [9, 1], [4, 1, 4, 1], [1, 9] and [1, 4, 1, 4].
Links
Programs
-
Mathematica
nmax = 61; CoefficientList[Series[1/(1 - Sum[x^k^2/(1 + x^k^2), {k, 1, nmax}]), {x, 0, nmax}], x]
Formula
G.f.: 1/(1 - Sum_{k>=1} x^(k^2)/(1 + x^(k^2))).