A301515 Complete list of integers x > 1 such that x^2 - x = y^q - y, where q is an odd prime and y is a prime power.
3, 6, 16, 91, 280
Offset: 1
Examples
a(3) = 16: 16^2 - 16 = 240 = 3^5 - 3.
Links
- Yann Bugeaud, Maurice Mignotte, Samir Siksek, Michael Stoll and Szabolcs Tengely, Integral points on hyperelliptic curves, Algebra Number Theory 2 (2008), 859-885.
- Daniel C. Fielder and Cecil O. Alford, Observations from computer experiments on an integer equation, Applications of Fibonacci numbers, edited by G. E. Bergum, A. N. Philippou and A. F. Horadam, vol. 7, pp. 93-103.
- M. Mignotte and A. Pethő, On the diophantine equation x^p - x = y^q - y, Publ. Mat. 43 (1999), 207-216.
- L. J. Mordell, On the integer solutions of y(y+1)=x(x+1)(x+2), Pacific J. Math. 13 (1963), 1347-1351.
Crossrefs
Cf. A102461 (the complete list of solutions x to (x^2 - x)/2 = (y^3 - y)/6).
Programs
-
Mathematica
r[x_, q_] := {x, y, q} /. {ToRules @ Reduce[y >= 2 && x^2 - x == y^q - y, y, Integers]}; r[x_] := Select[Table[r[x, q], {q, NextPrime[Log[2, x^2 - x + 2]]}] /. {{a_, b_, c_}} -> {a, b, c}, PrimeNu[#[[2]]]==1 && #[[3]] > 2&]; T = Table[r[x], {x, 2, 300}]; For[k = 1, k <= Length[T], k++, t = T[[k]]; If[t != {}, Print["x = ", t[[1, 1]], ", y = ", t[[1, 2]], ", q = ", t[[1, 3]]]]] (* Jean-François Alcover, Dec 17 2018 *)
Comments