A301590 Primes p such that there are no other solutions to A023900(x) = A023900(p) than a power of p.
2, 3, 5, 7, 11, 17, 19, 23, 29, 31, 43, 47, 53, 59, 67, 71, 79, 83, 101, 103, 107, 127, 131, 137, 139, 149, 151, 163, 167, 173, 179, 191, 197, 199, 211, 223, 227, 229, 239, 251, 257, 263, 269, 271, 283, 293, 307, 311, 317, 331, 347, 359, 367, 373, 379, 383, 389
Offset: 1
Keywords
Examples
2 is a term because there are no other solutions to A023900(x) = A023900(2) = -1 than other powers of 2. 13 is not a term because A023900(42) = -12 = A023900(13). Similarly, no P > 5 in A005383 is a term because A023900(P) = 1-P = (1-2)*(1-3)*(1-p) = A023900(2*3*p) with p = (P+1)/2. - _M. F. Hasler_, Aug 14 2021
Links
- M. F. Hasler, Table of n, a(n) for n = 1..10000, Sep 01 2021
Crossrefs
Programs
-
PARI
f(n) = sumdivmult(n, d, d*moebius(d)); /* A023900 */ isok(p, vp) = {for (k=p+1, p^2-1, if (f(k) == vp, return (0)); ); return (1); } lista(nn) = {forprime(p=2, nn, vp = f(p); if (isok(p, vp), print1(p, ", ")); ); }
-
PARI
select( {is_A301590(p)=!forcomposite(k=p+1, p^2-1, A023900(k)!=1-p|| return)&& isprime(p)}, primes([1,399])) \\ M. F. Hasler, Aug 14 2021
Comments