A301593 n can be represented the sum of a(n) distinct factorials. (If there is no such representation, a(n) = 0.)
1, 1, 2, 0, 0, 1, 2, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 3, 0, 0, 2, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Examples
n | | a(n) --+------------------------+----- 1 | 1! | 1 2 | 2! | 1 3 | 1! + 2! | 2 6 | 3! | 1 7 | 3! + 1! | 2 8 | 3! + 2! | 2 9 | 3! + 2! + 1! | 3
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Wikipedia, Factorial number system
Formula
a(n!) = 1, a(n!+1) = 2.