cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301693 Partial sums of A301692.

Original entry on oeis.org

1, 5, 12, 21, 33, 49, 70, 95, 121, 150, 184, 222, 263, 305, 351, 403, 458, 515, 573, 636, 706, 778, 851, 925, 1005, 1093, 1182, 1271, 1361, 1458, 1564, 1670, 1775, 1881, 1995, 2119, 2242, 2363, 2485, 2616, 2758, 2898, 3035, 3173, 3321, 3481, 3638, 3791, 3945, 4110, 4288, 4462, 4631, 4801, 4983, 5179, 5370, 5555, 5741, 5940, 6154, 6362, 6563, 6765, 6981, 7213, 7438, 7655, 7873, 8106, 8356, 8598, 8831, 9065, 9315, 9583, 9842, 10091, 10341, 10608, 10894, 11170, 11435, 11701, 11985, 12289, 12582, 12863, 13145, 13446, 13768, 14078, 14375, 14673, 14991, 15331, 15658, 15971, 16285, 16620, 16978
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link in A301692. - Ray Chandler, Aug 30 2023

Crossrefs

Cf. A301692.

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 2, -2, 0, 0, 0, -1, 1}, {1, 5, 12, 21, 33, 49, 70, 95, 121, 150, 184, 222, 263, 305}, 100] (* Paolo Xausa, Jul 31 2024 *)

Formula

From Colin Barker, Apr 07 2018: (Start)
G.f.: (1 + x)^2*(1 + x + x^3 + x^4 - x^5)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)^2).
a(n) = a(n-1) + 2*a(n-5) - 2*a(n-6) - a(n-10) + a(n-11) for n>13. (End)