A301693 Partial sums of A301692.
1, 5, 12, 21, 33, 49, 70, 95, 121, 150, 184, 222, 263, 305, 351, 403, 458, 515, 573, 636, 706, 778, 851, 925, 1005, 1093, 1182, 1271, 1361, 1458, 1564, 1670, 1775, 1881, 1995, 2119, 2242, 2363, 2485, 2616, 2758, 2898, 3035, 3173, 3321, 3481, 3638, 3791, 3945, 4110, 4288, 4462, 4631, 4801, 4983, 5179, 5370, 5555, 5741, 5940, 6154, 6362, 6563, 6765, 6981, 7213, 7438, 7655, 7873, 8106, 8356, 8598, 8831, 9065, 9315, 9583, 9842, 10091, 10341, 10608, 10894, 11170, 11435, 11701, 11985, 12289, 12582, 12863, 13145, 13446, 13768, 14078, 14375, 14673, 14991, 15331, 15658, 15971, 16285, 16620, 16978
Offset: 0
Keywords
Links
- Ray Chandler, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,2,-2,0,0,0,-1,1).
Crossrefs
Cf. A301692.
Programs
-
Mathematica
LinearRecurrence[{1, 0, 0, 0, 2, -2, 0, 0, 0, -1, 1}, {1, 5, 12, 21, 33, 49, 70, 95, 121, 150, 184, 222, 263, 305}, 100] (* Paolo Xausa, Jul 31 2024 *)
Formula
From Colin Barker, Apr 07 2018: (Start)
G.f.: (1 + x)^2*(1 + x + x^3 + x^4 - x^5)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)^2).
a(n) = a(n-1) + 2*a(n-5) - 2*a(n-6) - a(n-10) + a(n-11) for n>13. (End)
Comments