A301696 Partial sums of A219529.
1, 6, 17, 33, 54, 81, 113, 150, 193, 241, 294, 353, 417, 486, 561, 641, 726, 817, 913, 1014, 1121, 1233, 1350, 1473, 1601, 1734, 1873, 2017, 2166, 2321, 2481, 2646, 2817, 2993, 3174, 3361, 3553, 3750, 3953, 4161, 4374, 4593, 4817, 5046, 5281, 5521, 5766
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
Crossrefs
Cf. A219529.
Programs
-
Maple
A301696:= n-> (8*(3*n*(n+1) +1) + `mod`(n+2, 3) - `mod`(n+1, 3))/9; seq(A301696(n), n=0..60); # G. C. Greubel, May 27 2020
-
Mathematica
Table[(Mod[n+2, 3] - Mod[n+1, 3] + 8*(3*n*(n+1) +1))/9, {n,0,60}] (* G. C. Greubel, May 27 2020 *)
-
PARI
Vec((1 + x)^4 / ((1 - x)^3*(1 + x + x^2)) + O(x^60)) \\ Colin Barker, Mar 26 2018
-
Sage
[(24*n*(n+1)+8 + (n+2)%3 - (n+1)%3 )/9 for n in (0..60)] # G. C. Greubel, May 27 2020
Formula
From Colin Barker, Mar 26 2018: (Start)
G.f.: (1 + x)^4 / ((1 - x)^3*(1 + x + x^2)).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>4. (End)
From G. C. Greubel, May 27 2020: (Start)
a(n) = (ChebyshevU(n, -1/2) - ChebyshevU(n-1, -1/2) + 8*(3*n*(n+1) +1))/9.