cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301696 Partial sums of A219529.

Original entry on oeis.org

1, 6, 17, 33, 54, 81, 113, 150, 193, 241, 294, 353, 417, 486, 561, 641, 726, 817, 913, 1014, 1121, 1233, 1350, 1473, 1601, 1734, 1873, 2017, 2166, 2321, 2481, 2646, 2817, 2993, 3174, 3361, 3553, 3750, 3953, 4161, 4374, 4593, 4817, 5046, 5281, 5521, 5766
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2018

Keywords

Crossrefs

Cf. A219529.

Programs

  • Maple
    A301696:= n-> (8*(3*n*(n+1) +1) + `mod`(n+2, 3) - `mod`(n+1, 3))/9;
    seq(A301696(n), n=0..60); # G. C. Greubel, May 27 2020
  • Mathematica
    Table[(Mod[n+2, 3] - Mod[n+1, 3] + 8*(3*n*(n+1) +1))/9, {n,0,60}] (* G. C. Greubel, May 27 2020 *)
  • PARI
    Vec((1 + x)^4 / ((1 - x)^3*(1 + x + x^2)) + O(x^60)) \\ Colin Barker, Mar 26 2018
    
  • Sage
    [(24*n*(n+1)+8 + (n+2)%3 - (n+1)%3 )/9 for n in (0..60)] # G. C. Greubel, May 27 2020

Formula

From Colin Barker, Mar 26 2018: (Start)
G.f.: (1 + x)^4 / ((1 - x)^3*(1 + x + x^2)).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>4. (End)
From G. C. Greubel, May 27 2020: (Start)
a(n) = (ChebyshevU(n, -1/2) - ChebyshevU(n-1, -1/2) + 8*(3*n*(n+1) +1))/9.
a(n) = ( A131713(n) + 8*A028896(n) + 8 )/9. (End)