A301753 Number of ways to choose a strict rooted partition of each part in a rooted partition of n.
1, 1, 2, 3, 6, 9, 16, 25, 43, 66, 108, 166, 269, 408, 643, 975, 1517, 2277, 3497, 5223, 7936, 11803, 17736, 26219, 39174, 57594, 85299, 124957, 183987, 268158, 392685, 569987, 830282, 1200843, 1740422, 2507823, 3620550, 5197885, 7472229, 10694865, 15319700
Offset: 1
Keywords
Examples
The a(7) = 16 rooted twice-partitions: (5), (32), (41), (2)(2), (3)(1), (4)(), (21)(1), (31)(), (1)(1)(1), (2)(1)(), (3)()(), (21)()(), (1)(1)()(), (2)()()(), (1)()()()(), ()()()()()().
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Mathematica
nn=50; ser=x*Product[1/(1-PartitionsQ[n-1]x^n),{n,nn}]; Table[SeriesCoefficient[ser,{x,0,n}],{n,nn}]
-
PARI
seq(n)={my(u=Vec(prod(k=1, n-1, 1 + x^k + O(x^n)))); Vec(1/prod(k=1, n-1, 1 - u[k]*x^k + O(x^n)))} \\ Andrew Howroyd, Aug 29 2018
Formula
O.g.f.: x * Product_{n > 0} 1/(1 - A000009(n-1) x^n).
Comments