A301760 Number of rooted twice-partitions of n where the composite rooted partition is constant.
1, 1, 2, 4, 7, 11, 17, 24, 34, 46, 63, 82, 109, 140, 183, 233, 298, 376, 479, 598, 753, 938, 1171, 1449, 1797, 2210, 2726, 3342, 4095, 4990, 6088, 7388, 8968, 10843, 13099, 15770, 18975, 22756, 27276, 32603, 38925, 46353, 55158, 65479, 77656, 91904, 108645
Offset: 1
Keywords
Examples
The a(5) = 7 rooted twice-partitions: (3), (111), (2)(), (11)(), (1)(1), (1)()(), ()()()().
Crossrefs
Programs
-
Mathematica
nn=50; ser=(1-nn)/(1-x)+Sum[Product[1/(1-x^(d k+1)),{k,0,nn}],{d,nn}]; CoefficientList[Series[ser,{x,0,nn}],x]
Formula
O.g.f.: 1/(1 - x) + Sum_{n > 0} (-1/(1 - x) + Product_{k >= 0} 1/(1 - x^(n * k + 1))).
Comments