A301766 Number of rooted twice-partitions of n where the first rooted partition is strict and the composite rooted partition is constant, i.e., of type (R,Q,R).
1, 1, 1, 3, 4, 6, 7, 9, 11, 13, 16, 19, 22, 26, 32, 36, 42, 52, 59, 66, 79, 93, 108, 125, 141, 162, 192, 222, 248, 285, 331, 375, 430, 492, 555, 632, 719, 816, 929, 1051, 1177, 1327, 1510, 1701, 1908, 2146, 2408, 2705, 3035, 3388, 3792, 4257, 4751, 5284, 5894
Offset: 1
Keywords
Examples
The a(9) = 11 rooted twice-partitions: (7), (1111111), (6)(), (33)(), (222)(), (111111)(), (11111)(1), (22)(2), (1111)(11), (1111)(1)(), (111)(11)().
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
twirtns[n_]:=Join@@Table[Tuples[IntegerPartitions[#-1]&/@ptn],{ptn,IntegerPartitions[n-1]}]; Table[Select[twirtns[n],UnsameQ@@Total/@#&&SameQ@@Join@@#&]//Length,{n,20}]
-
PARI
a(n)=if(n<3, 1, sum(k=1, n-2, polcoef(prod(j=0, (n-2)\k, 1 + x^(j*k + 1) + O(x^n)), n-1))) \\ Andrew Howroyd, Aug 26 2018
Extensions
Terms a(26) and beyond from Andrew Howroyd, Aug 26 2018
Comments