cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301766 Number of rooted twice-partitions of n where the first rooted partition is strict and the composite rooted partition is constant, i.e., of type (R,Q,R).

Original entry on oeis.org

1, 1, 1, 3, 4, 6, 7, 9, 11, 13, 16, 19, 22, 26, 32, 36, 42, 52, 59, 66, 79, 93, 108, 125, 141, 162, 192, 222, 248, 285, 331, 375, 430, 492, 555, 632, 719, 816, 929, 1051, 1177, 1327, 1510, 1701, 1908, 2146, 2408, 2705, 3035, 3388, 3792, 4257, 4751, 5284, 5894
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1. A rooted twice-partition of n is a choice of a rooted partition of each part in a rooted partition of n.

Examples

			The a(9) = 11 rooted twice-partitions:
(7), (1111111),
(6)(), (33)(), (222)(), (111111)(), (11111)(1), (22)(2), (1111)(11),
(1111)(1)(), (111)(11)().
		

Crossrefs

Programs

  • Mathematica
    twirtns[n_]:=Join@@Table[Tuples[IntegerPartitions[#-1]&/@ptn],{ptn,IntegerPartitions[n-1]}];
    Table[Select[twirtns[n],UnsameQ@@Total/@#&&SameQ@@Join@@#&]//Length,{n,20}]
  • PARI
    a(n)=if(n<3, 1, sum(k=1, n-2, polcoef(prod(j=0, (n-2)\k, 1 + x^(j*k + 1) + O(x^n)), n-1))) \\ Andrew Howroyd, Aug 26 2018

Extensions

Terms a(26) and beyond from Andrew Howroyd, Aug 26 2018