cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A302010 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 4, 8, 4, 8, 32, 32, 8, 16, 128, 240, 128, 16, 32, 512, 1808, 1808, 512, 32, 64, 2048, 13616, 25808, 13616, 2048, 64, 128, 8192, 102544, 369040, 368144, 102544, 8192, 128, 256, 32768, 772272, 5276816, 9989376, 5251712, 772272, 32768, 256, 512, 131072
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2018

Keywords

Comments

Table starts
...1......2........4...........8............16...............32
...2......8.......32.........128...........512.............2048
...4.....32......240........1808.........13616...........102544
...8....128.....1808.......25808........369040..........5276816
..16....512....13616......368144.......9989376........270990144
..32...2048...102544.....5251712.....270422672......13918667808
..64...8192...772272....74917424....7320574992.....714887543376
.128..32768..5816080..1068722240..198174358400...36717919842624
.256.131072.43801648.15245681888.5364752820144.1885898831169344

Examples

			Some solutions for n=5 k=4
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..1. .0..0..0..0
..1..0..0..1. .1..0..1..0. .0..1..0..1. .1..1..0..0. .0..0..1..0
..0..1..0..0. .0..0..1..1. .1..1..1..0. .0..0..1..0. .0..0..0..1
..1..1..1..1. .1..1..0..0. .0..0..0..0. .0..1..0..0. .1..1..0..1
..0..1..0..1. .0..0..1..0. .0..1..0..0. .1..1..1..0. .0..0..0..0
		

Crossrefs

Column 1 and row 1 are A000079(n-1).
Column 2 and row 2 are A004171(n-1).
Column 3 and row 3 are A301779.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1)
k=3: a(n) = 7*a(n-1) +4*a(n-2)
k=4: a(n) = 13*a(n-1) +18*a(n-2) +a(n-3) -4*a(n-4)
k=5: a(n) = 24*a(n-1) +82*a(n-2) +34*a(n-3) -90*a(n-4) -40*a(n-5) +37*a(n-6)
k=6: [order 10] for n>12
k=7: [order 17] for n>19
Empirical for row n:
n=1: a(n) = 2*a(n-1)
n=2: a(n) = 4*a(n-1)
n=3: a(n) = 7*a(n-1) +4*a(n-2)
n=4: a(n) = 13*a(n-1) +20*a(n-2) -16*a(n-3) -64*a(n-4) for n>6
n=5: [order 12] for n>15
n=6: [order 32] for n>36
n=7: [order 78] for n>83
Showing 1-1 of 1 results.