cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A301779 Number of nX3 0..1 arrays with every element equal to 0, 1, 2 or 3 horizontally or vertically adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 32, 240, 1808, 13616, 102544, 772272, 5816080, 43801648, 329875856, 2484337584, 18709866512, 140906415920, 1061184377488, 7991916306096, 60188151652624, 453284726792752, 3413745694159760, 25709358766289328, 193620494140664336
Offset: 1

Views

Author

R. H. Hardin, Mar 26 2018

Keywords

Comments

Column 3 of A301784.

Examples

			Some solutions for n=5
..0..1..0. .0..0..0. .0..0..1. .0..0..1. .0..1..0. .0..1..1. .0..0..1
..1..1..0. .0..1..0. .1..1..1. .0..0..0. .1..1..1. .1..0..0. .0..0..1
..0..0..0. .1..0..1. .0..0..1. .1..1..0. .1..0..0. .0..1..1. .0..0..0
..1..0..1. .1..1..0. .1..1..0. .1..1..1. .0..1..1. .0..1..0. .0..1..0
..0..0..1. .0..0..0. .1..0..1. .1..0..0. .0..0..1. .1..0..0. .1..0..0
		

Crossrefs

Cf. A301784.

Formula

Empirical: a(n) = 7*a(n-1) +4*a(n-2)

A301778 Number of n X n 0..1 arrays with every element equal to 0, 1, 2 or 3 horizontally or vertically adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 8, 240, 25872, 10033408, 14004742144, 70356843337600, 1272146363687760896, 82788264567204704083456, 19391044190172624196057083904, 16346860632996556855602568035358720
Offset: 1

Views

Author

R. H. Hardin, Mar 26 2018

Keywords

Comments

Diagonal of A301784.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..1..0..1. .0..0..1..0..1. .0..0..0..0..1. .0..0..1..0..0
..0..0..0..0..1. .1..0..1..1..0. .1..1..1..1..0. .0..0..1..1..0
..1..1..0..1..1. .0..0..1..1..1. .0..0..0..1..0. .1..1..1..0..1
..0..1..1..0..0. .0..0..0..0..0. .1..0..1..0..0. .0..1..1..0..0
		

Crossrefs

Cf. A301784.

A301780 Number of nX4 0..1 arrays with every element equal to 0, 1, 2 or 3 horizontally or vertically adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 128, 1808, 25872, 369936, 5289488, 75632400, 1081436176, 15463010576, 221099215376, 3161406558992, 45203649489936, 646348354426128, 9241868742610448, 132145672330843920, 1889496507915005968
Offset: 1

Views

Author

R. H. Hardin, Mar 26 2018

Keywords

Comments

Column 4 of A301784.

Examples

			Some solutions for n=5
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..0
..0..1..0..1. .0..1..1..1. .1..0..1..1. .0..1..0..0. .0..0..1..0
..1..0..0..0. .0..1..0..1. .0..0..1..0. .1..0..1..1. .1..1..1..0
..0..1..1..1. .1..1..1..0. .0..0..1..0. .0..1..0..1. .1..0..1..0
..1..1..0..0. .1..0..0..0. .0..0..1..1. .1..0..1..0. .1..1..1..1
		

Crossrefs

Cf. A301784.

Formula

Empirical: a(n) = 13*a(n-1) +20*a(n-2) -16*a(n-3) -64*a(n-4)

A301781 Number of nX5 0..1 arrays with every element equal to 0, 1, 2 or 3 horizontally or vertically adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 512, 13616, 369936, 10033408, 272151040, 7381982784, 200232929792, 5431228387584, 147319630168320, 3995978796839936, 108389129977399296, 2940006465162900480, 79746354795922395136, 2163084053927246327808
Offset: 1

Views

Author

R. H. Hardin, Mar 26 2018

Keywords

Comments

Column 5 of A301784.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..1..0..1. .0..0..1..0..0. .0..0..0..1..1. .0..0..0..1..0
..1..0..0..1..1. .0..0..1..1..0. .1..1..0..1..0. .0..1..1..0..0
..1..0..0..0..0. .1..0..0..1..0. .0..1..0..1..0. .1..1..1..0..1
..1..0..1..1..1. .0..0..1..0..1. .0..1..0..1..0. .0..0..1..0..1
		

Crossrefs

Cf. A301784.

Formula

Empirical: a(n) = 24*a(n-1) +92*a(n-2) -156*a(n-3) -1088*a(n-4) -480*a(n-5) +3200*a(n-6) +3200*a(n-7) -4608*a(n-8)

A301782 Number of nX6 0..1 arrays with every element equal to 0, 1, 2 or 3 horizontally or vertically adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 2048, 102544, 5289488, 272151040, 14004742144, 720677122368, 37085631944448, 1908405940870656, 98205502293666304, 5053600235887926528, 260055442333825587456, 13382307648283890182400, 688646068647065495513344
Offset: 1

Views

Author

R. H. Hardin, Mar 26 2018

Keywords

Comments

Column 6 of A301784.

Examples

			Some solutions for n=5
..0..0..0..0..1..1. .0..0..1..1..0..0. .0..0..1..1..0..0. .0..0..1..0..0..1
..0..0..1..0..0..0. .0..0..1..0..0..0. .0..0..1..1..0..1. .0..0..1..0..1..1
..0..0..1..1..0..1. .0..0..1..1..1..0. .0..0..1..1..1..1. .0..0..1..0..1..0
..0..0..0..0..1..0. .0..0..1..1..0..0. .0..0..1..0..0..0. .0..0..1..1..0..1
..0..1..0..0..1..1. .0..0..1..0..1..1. .0..0..0..1..1..0. .0..0..0..0..0..1
		

Crossrefs

Cf. A301784.

Formula

Empirical: a(n) = 43*a(n-1) +480*a(n-2) -1702*a(n-3) -30832*a(n-4) -11408*a(n-5) +814664*a(n-6) +1472112*a(n-7) -11834976*a(n-8) -36099456*a(n-9) +88414976*a(n-10) +486329344*a(n-11) -32384000*a(n-12) -2712928256*a(n-13) -1672069120*a(n-14) +2313256960*a(n-15) -301727744*a(n-16) -1018691584*a(n-17) +278921216*a(n-18) +973078528*a(n-19) -234881024*a(n-20)

A301783 Number of nX7 0..1 arrays with every element equal to 0, 1, 2 or 3 horizontally or vertically adjacent elements, with upper left element zero.

Original entry on oeis.org

64, 8192, 772272, 75632400, 7381982784, 720677122368, 70356843337600, 6868652110439488, 670558705424435264, 65463930429261156928, 6390978398666846999104, 623925337422198984802880
Offset: 1

Views

Author

R. H. Hardin, Mar 26 2018

Keywords

Comments

Column 7 of A301784.

Examples

			Some solutions for n=5
..0..0..0..0..0..0..0. .0..0..0..0..0..1..0. .0..0..0..0..0..0..1
..0..0..1..0..1..1..1. .0..0..1..0..1..0..1. .0..0..1..0..0..1..0
..0..0..1..0..1..0..1. .0..0..1..0..0..1..0. .0..0..1..0..1..1..0
..0..0..1..1..1..0..1. .0..0..1..0..1..0..0. .0..0..1..0..1..0..0
..0..0..0..1..0..0..1. .0..0..0..1..0..0..1. .0..0..0..1..0..0..1
		

Crossrefs

Cf. A301784.

Formula

Empirical recurrence of order 46 (see link above)
Showing 1-6 of 6 results.