cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301813 Decimal expansion of Integral_{-infinity..infinity} -log((z^2+1/4)^(1/4))* sech(Pi*z)^2 dz.

Original entry on oeis.org

1, 8, 3, 7, 3, 3, 4, 5, 2, 5, 9, 8, 3, 0, 7, 9, 8, 0, 7, 5, 9, 2, 8, 4, 4, 6, 8, 1, 4, 3, 7, 5, 6, 1, 8, 2, 8, 2, 7, 2, 5, 8, 5, 6, 1, 1, 2, 1, 2, 8, 2, 4, 2, 4, 7, 2, 2, 1, 7, 4, 4, 1, 6, 7, 4, 9, 1, 2, 5
Offset: 0

Views

Author

Peter Luschny, Apr 18 2018

Keywords

Examples

			0.183733452598307980759284468143756182827258561121282424722174416749125638699...
		

Crossrefs

Programs

  • Magma
    R:= RealField(100); EulerGamma(R)/Pi(R); // G. C. Greubel, Sep 05 2018
  • Maple
    evalf(gamma/Pi, 20);
    g := -int(log(z^2+1/4)*sech(Pi*z)^2/4, z=-10..10); evalf(g, 20);
    # This is an approximation. For more valid decimal digits the
    # range of integration and the precision must be increased.
  • Mathematica
    RealDigits[EulerGamma/Pi, 10, 40] [[1]]
  • PARI
    Euler/Pi \\ Altug Alkan, Apr 18 2018
    

Formula

Equals EulerGamma / Pi.
Equals Integral_{0..infinity} -log(sqrt(z^2 + 1/4))/cosh(Pi*z)^2 dz.