A301815 Decimal expansion of gamma / (2*Pi), where gamma is Euler's constant A001620.
0, 9, 1, 8, 6, 6, 7, 2, 6, 2, 9, 9, 1, 5, 3, 9, 9, 0, 3, 7, 9, 6, 4, 2, 2, 3, 4, 0, 7, 1, 8, 7, 8, 0, 9, 1, 4, 1, 3, 6, 2, 9, 2, 8, 0, 5, 6, 0, 6, 4, 1, 2, 1, 2, 3, 6, 1, 0, 8, 7, 2, 0, 8, 3, 7, 4, 5, 6, 2, 8, 1, 9, 3, 4, 9, 6, 1, 8, 0, 7, 0, 6, 2, 9, 2, 3, 4, 6
Offset: 0
Examples
Equals 0.0918667262991539903796422340718780914136292805606412123610872...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Peter Luschny, An expansion for the Bernoulli function
Programs
-
Magma
R:=RealField(100); EulerGamma(R)/(2*Pi(R)); // G. C. Greubel, Aug 27 2018
-
Maple
evalf(gamma(0)/(2*Pi), 100);
-
Mathematica
RealDigits[EulerGamma/(2*Pi), 10, 100][[1]] (* G. C. Greubel, Aug 11 2018 *)
-
PARI
Euler/(2*Pi) \\ Altug Alkan, Apr 13 2018
Formula
Let beta(r) be the real part of Integral_{-oo..oo} (log(1/2 + i*z)^r / (exp(-Pi*z) + exp(Pi*z))^2) dz, where i denotes the imaginary unit. The constant equals -beta(1) and A301814 equals beta(1/2).