A301841 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1 or 2 horizontally or antidiagonally adjacent elements, with upper left element zero.
1, 2, 2, 4, 8, 4, 8, 25, 32, 8, 16, 81, 139, 128, 16, 32, 263, 678, 773, 512, 32, 64, 855, 3182, 5748, 4299, 2048, 64, 128, 2778, 15199, 39703, 48802, 23909, 8192, 128, 256, 9027, 72514, 281758, 496085, 414385, 132971, 32768, 256, 512, 29333, 346244
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..1..1..0. .0..1..0..1. .0..1..1..1. .0..0..0..0. .0..0..1..1 ..1..0..1..0. .1..1..0..1. .1..0..1..0. .1..1..0..1. .0..1..0..1 ..1..0..1..1. .1..0..1..0. .1..0..1..1. .0..1..0..1. .1..1..0..1 ..0..1..0..0. .0..0..1..0. .1..0..1..1. .0..0..1..0. .0..1..0..0 ..1..0..1..0. .0..1..0..1. .1..0..0..0. .1..1..0..1. .1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..417
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1)
k=3: a(n) = 7*a(n-1) -8*a(n-2) for n>3
k=4: a(n) = 13*a(n-1) -46*a(n-2) +72*a(n-3) -57*a(n-4) +16*a(n-5) for n>6
k=5: [order 11] for n>13
k=6: [order 25] for n>27
k=7: [order 53] for n>56
Empirical for row n:
n=1: a(n) = 2*a(n-1)
n=2: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4) for n>6
n=3: [order 12] for n>14
n=4: [order 35] for n>38
n=5: [order 99] for n>104
Comments