A301866 Numbers k such that iphi(k) = iphi(k+1), where iphi is the infinitary totient function (A064380).
1, 21, 143, 208, 314, 459, 957, 1652, 2685, 5091, 20155, 38180, 41265, 45716, 54722, 116937, 161001, 186794, 230390, 274533, 338547, 416577, 430137, 495187
Offset: 1
Examples
iphi(21) = iphi(22) = 14, thus 21 is in the sequence.
Programs
-
Mathematica
irelprime[n_] := Select[temp = iDivisors[n]; Range[n], Intersection[iDivisors[#], temp] === {1} &]; bitty[k_] := Union[Flatten[Outer[Plus, Sequence @@ {0, #1} & /@ Union[2^Range[0, Floor[Log[2, k]]]*Reverse[IntegerDigits[k, 2]]]]]]; iDivisors[k_Integer] := Sort[(Times @@ (First[it]^(#1 /. z -> List)) &) /@ Flatten[Outer[z, Sequence @@ bitty /@ Last[it = Transpose[FactorInteger[k]]], 1]]]; iDivisors[1] := {1}; iphi[n_] := Length[irelprime[n]]; iphiQ[n_] := iphi[n] == iphi[n + 1]; Select[Range[10^3], iphiQ](* after Wouter Meeussen at A064379 *)
Extensions
a(11)-a(15) from Robert Price, May 22 2018
a(16)-a(24) from Amiram Eldar, Mar 26 2023
Comments