cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A301923 Expansion of e.g.f. 1/(1 + (exp(x) - 1)/(1 + (exp(x) - 1)^2/(1 + (exp(x) - 1)^3/(1 + ...)))), a continued fraction.

Original entry on oeis.org

1, -1, 1, 5, -11, -91, -419, -1555, 35029, 708629, 8413261, 79666685, -294564731, -38505298651, -1052947792259, -18923930396275, -206463542201291, 1794180062198069, 205343758433071021, 8230374933815425565, 237203632846737093349, 4859533645922850398789, 34618271271121471451101
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 19 2018

Keywords

Examples

			E.g.f.: A(x) = 1 - x + x^2/2! + 5*x^3/3! - 11*x^4/4! - 91*x^5/5! - 419*x^6/6! - 1555*x^7/7! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[1/(1 + ContinuedFractionK[(Exp[x] - 1)^k, 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
    b[n_] := b[n] = SeriesCoefficient[QPochhammer[x, x^5] QPochhammer[x^4, x^5]/(QPochhammer[x^2, x^5] QPochhammer[x^3, x^5]), {x, 0, n}]; a[n_] := a[n] = Sum[StirlingS2[n, k] b[k] k!, {k, 0, n}]; Table[a[n], {n, 0, 22}]

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k)*A007325(k)*k!.

A322342 Expansion of e.g.f. 1/(1 - log(1 + x)/(1 - log(1 + x)^2/(1 - log(1 + x)^3/(1 - ...)))), a continued fraction.

Original entry on oeis.org

1, 1, 1, 8, 16, 224, 1328, 8280, 192960, 337992, 33969672, 11690832, 7909754400, -2553028752, 2357881048560, 3942533549568, 661635400722048, 13397372969553792, -107825500036658304, 22964754191590789632, -572404186520543904768, 31472786179436211417600, -886973046496642227294720
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 19 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[1/(1 + ContinuedFractionK[-Log[1 + x]^k, 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!

Formula

a(n) = Sum_{k=0..n} Stirling1(n,k)*A005169(k)*k!.
Showing 1-2 of 2 results.